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Unconditionally Stable Schemes

Convexity Splitting
A minimizer u of an energy 7 (u) is formally computed as a stationary
solution of

ug = —VJ(u)

u(0) = up.

Under certain assumptions on 7 this is called a gradient system.
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Convexity Splitting

A minimizer u of an energy J (u) is formally computed as a stationary
solution of

ug = —VJ(u)
u(0) = up.

Under certain assumptions on 7 this is called a gradient system.

If 7 (u) is convex then only a single equilibrium for the gradient system
exists.

If 7 (u) is not convex multiple minimizers may exist and the gradient
flow can expand u(t). An explicit iterative algorithm, i.e.

up+1 = up — AtVT (ug) in this case may require extremely small time
steps, depending of course on 7. For the higher order equations

J (uy) contains second order derivatives resulting in a restriction of At
up to order (Ax)%.
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Convexity splitting (cont.)

The idea of convexity splitting is to derive a semi-impicit iterative
scheme that is unconditionally stable.

Eyre (1998): Let

T (u) = Je(u) = Te(u)
where J., J. are strictly convex. Under certain assumptions on the
functionals, the numerical scheme

Up 1 = up — ALV Te(upy1) — VTe(ug))

is gradient stable for every initial condition uy € R and all A¢ > 0, and
possesses a unique solution for each iteration step.
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Convexity splitting (cont.)

The idea of convexity splitting is to derive a semi-impicit iterative
scheme that is unconditionally stable.

Eyre (1998): Let
T (u) = Je(u) = Te(u)

where J., J. are strictly convex. Under certain assumptions on the
functionals, the numerical scheme

Up 1 = up — ALV Te(upy1) — VTe(ug))

is gradient stable for every initial condition uy € R and all A¢ > 0, and
possesses a unique solution for each iteration step.

Although our inpainting models do not obey a variational principle (the
are not gradient flows!), we can apply the convexity splitting method in
a modified form ...
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Convexity splitting for Cahn-Hilliard inpainting

1 1
ur = A(—eAu + ;F'(u)) + XXQ\D(Q —u),

where g is a given binary image.
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Convexity splitting for Cahn-Hilliard inpainting

1 1
up = A(—eAu + ;F'(u)) + XXQ\D(Q —u),

where g is a given binary image.
Then the evolution of « can be written as the sum of two gradients, i.e.,

w=—-Vg-1J" (u) + V2T (),

where
') = [ §IVuP + CFw) da,
Q 2 €
and

1
T?(u) = — / —u)? dz.
(u) 2\ QXQ\D(!J u)® dz

Schonlieb (NAM, Gottingen) PDEs for Image Inpainting Part Ill Gottingen - 28.January.2010 6/39



Convexity splitting for Cahn-Hilliard inpainting (cont.)

1
THu) = /Q % Vul® + ~F(u) da,
Jt=J! — 7} with
C
Ty = [ 510+ G uf? d,
Q

and

T u) = / —EF(u) + “ ul® da.
0 € 2
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Convexity splitting for Cahn-Hilliard inpainting (cont.)

T (u) = 1/QXQ\D(9 —u)® dz.

2\
J? = J2 — 72 with
T2(u) = / < 2 da,
o 2

and

1 Ca 1o
jez—/—x g—qu;L'—&—/u dx.
2/, a\p(g — u) o |ul
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Convexity splitting for Cahn-Hilliard inpainting (cont.)

The resulting time-stepping scheme is

Bt 7 o (TR — TR R)) — Ve (T2 — J2 k),

T

where V-1 and V. represent the Fréchet derivative with respect to
the H~! inner product and the L? inner product respectively. This
translates to a numerical scheme of the form

Ukt1 = Uk eAAug1 — CrAugy1 + Cougpy
1 1
— ;AF’(Uk) — CrlAug + T xo\p(9 — uk) + Caui.

To make sure that 7}, J/, i = 1,2, are convex the constants C; > 1,
CQ > 1/)\.
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Convexity splitting for TV-H ~! inpainting

A similar technique can be applied to TV-H~! inpainting:

Wt O AR 4 Cuubtt = 0 AR — A(V - (|§Z:y )

+Cou® + Fxo\p(g — ub),

with constants ¢ > % (where here e comes from the regularization of
the total variation), Cy > 1/\.

Schonlieb (NAM, Géttingen) PDEs for Image Inpainting Part Ill Gottingen - 28.January.2010 9/39



Rigorous results for the schemes

-1
Cahn-Hilliard TV-H |
@ Consistency @ Consistency
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Rigorous results for the schemes

-1
Cahn-Hilliard TV-H |
@ Consistency @ Consistency
@ Boundedness, i.e., @ Boundedness, i.e., unconditional

unconditional stability
stability
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Rigorous results for the schemes

TV-H!
@ Consistency
@ Boundedness, i.e., unconditional

Cahn-Hilliard
@ Consistency
@ Boundedness, i.e.,

unconditional stability
stability @ Convergence ...only under
@ Convergence additional assumptions on the exact
solution!
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Rigorous results for the schemes

TV-H!
@ Consistency
@ Boundedness, i.e., unconditional

Cahn-Hilliard
@ Consistency
@ Boundedness, i.e.,

unconditional stability
stability @ Convergence ...only under
@ Convergence additional assumptions on the exact
solution!

Reference:
@ C.-B. Schénlieb, A. Bertozzi, Unconditionally stable schemes for
higher order inpainting, UCLA-CAM report num. 09-78.
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Unconditionally stable ... but not fast!

Lets consider again the numerical scheme for TV-H ~! inpainting:

wktl_yk
T

+ O AR 4 bt = A2 k—A(v.(—gz’;,))

+Cou" + fxonp(g — ub),
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Unconditionally stable ... but not fast!

Lets consider again the numerical scheme for TV-H ~! inpainting:

wk Lk + Oy A2 L Opuktl = O A2UE — A(V - (|§ZZ’))

+Cou" + fxonp(g — ub),

The constant C; has to be chosen such that Cy, > 1/ ...
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Unconditionally stable ... but not fast!

Lets consider again the numerical scheme for TV-H ~! inpainting:

UHI;Uk + CLAMFT Ol = C1A%E — A(V (%))

+Cou" + fxonp(g — ub),

The constant C; has to be chosen such that Cy, > 1/ ...

...since usually in inpainting tasks X is chosen comparatively small,
e.g., A = 1073, the condition on Cy damps the convergence of this
method = converging slow!
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Outline

9 A Dual Approach for TV-H=! Minimization
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TV-H ! Minimization

For a given function g € L?(Q) we are interested in the numerical
realization of the following minimization problem

. B 1 2
onine J (u) = |Dul (2) + ) [Tu—gll~,,

where T' € L£(L?(f2)) is a bounded linear operator and A > 0 is a tuning
parameter. The function | Du| (£2) is the total variation of v and ||.||_, is
the norm in H=1(Q), the dual of H} ().
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TV-H ! Minimization

For a given function g € L?(Q) we are interested in the numerical
realization of the following minimization problem

. B 1 2
onine J (u) = |Dul (2) + ) [Tu—gll~,,

where T' € L£(L?(f2)) is a bounded linear operator and A > 0 is a tuning
parameter. The function | Du| (£2) is the total variation of v and ||.||_, is
the norm in H=1(Q), the dual of H} ().

This results in a fourth order optimality condition, e.g., if T' = Id:

1
Ap + X(g —u) =0, pé€dDul(),
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Numerical Solution of TV-H ! Minimization

We want to numerically solve the minimization problem

. 1 2
= |Dul () + — ||[Tu — .
ue%l‘l/l%ﬂ)j(U) |Du| (2) + 2 |Tu—gl|~,
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Numerical Solution of TV-H ! Minimization

We want to numerically solve the minimization problem

. 1 2
= |Dul () + — ||[Tu — .
uE%l\l/I%Q)j(U) |Du| (2) + 2 |Tu—gl|~,

Usually: the numerical solution of TV-H ~! minimization depends on
the specific problem at hand.
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A Dual Approach for TV-H™ 1 Minimization

The Approach of Lieu & Vese for
Denoising/Decomposition
TV-H~! denoising/decomposition is solved by using the Fourier

representation of the H~! norm on the whole R?, d > 1. Thereby the
space H~'(R?) is defined as a Hilbert space equipped with the inner

product )
<f,g>_1=/(1+l£l2) 74 d¢

and associated norm || f||_, = /(f, f)_,-
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A Dual Approach for TV-H™ 1 Minimization

The Approach of Lieu & Vese for
Denoising/Decomposition

TV-H~! denoising/decomposition is solved by using the Fourier
representation of the H~! norm on the whole R?, d > 1. Thereby the

space H~'(R?) is defined as a Hilbert space equipped with the inner
product

(901 = / (1+16?) " fg de

and associated norm || f||_, = /(f, f)_,-

=
only have to solve a 2nd order PDE

P

(X 9=t —0 i

AV - (o) + |2 Re{ CTOR }] =0 inQ

% =0 on 0f)
u=20 outside €,
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Convexity splitting for TV-H ! inpainting’

Convexity splitting: iterative scheme for TV-H ~! inpainting that is
unconditionally stable:

Tjoint work with Andrea Bertozzi
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S dlei i Ui |
Convexity splitting for TV-H ! inpainting’
Convexity splitting: iterative scheme for TV-H ~! inpainting that is

unconditionally stable:
Apply convexity splitting to the two energies

F'w) = [ Vulde. 7w = 50 [ xaplu—o)

Tjoint work with Andrea Bertozzi
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Convexity splitting for TV-H ! inpainting’
Convexity splitting: iterative scheme for TV-H ~! inpainting that is

unconditionally stable:
Apply convexity splitting to the two energies

F'w) = [ Vulde. 7w = 50 [ xaplu—o)

WS 4 LA 4 Couf = LA - AV (Iguk!))

+Couf + )\XQ\D( u®),

with constants C > % (where here ¢ comes from the regularization of
the total variation), Cy > 1/A.

Tjoint work with Andrea Bertozzi
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A dual method

@ Since usually in inpainting tasks \ is chosen comparatively small,
e.g., A = 1073, the condition on C, damps the convergence of this
method = although unconditionally stable, converging slow! ...

@ ...this will be similar for the new approach, but with the new
approach we will be able to apply domain decomposition to
solve the minimization problem = Parallelize the numerical
computation = Shorten the computational time.

@ The new approach will give us a "unified” algorithm to solve
TV-H~! minimization.
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A dual method (cont.)

Chambolle (04): A dual method to numerically compute a minimizer of

1 2
J(u) = 5y lw = gllz2() + |Dul ().
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A dual method (cont.)

Chambolle (04): A dual method to numerically compute a minimizer of

1
J (u) lu = gllZ2() + [Dul ().

P
It amounts to compute the minimizer u of J as
u=g-Pik(g),

where Py denotes the orthogonal projection over L?(2) on the
convex set K which is the closure of the set

{V - €:6e€ CHYR?Y), [€(2)] < 1Vx € R?}.
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A dual method (cont.)

Chambolle (04): A dual method to numerically compute a minimizer of

1
J (u) lu = gllZ2() + [Dul ().

P
It amounts to compute the minimizer u of J as
u=g-Pik(g),

where Py denotes the orthogonal projection over L?(2) on the
convex set K which is the closure of the set

{V - €:6e€ CHYR?Y), [€(2)] < 1Vx € R?}.

To numerically compute the projection Pk (g) he uses a fixed point
algorithm.
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A dual method (cont.)

...now we want to do something similar for TV-H ~! minimization, i.e.,
we want to numerically solve

. B 1 2
UE%I‘I/I%Q)j(U) = |Dul (@) + 55 [ Tu —glZ; -
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A dual method (cont.)

...now we want to do something similar for TV-H ~! minimization, i.e.,
we want to numerically solve

. B 1 2
onine J(u) = [Dul (2) + ) [Tu— g~ -

@ First Step: Solve the simplified problem when T' = Id

@ Second Step: Use the solution for T' = Id in order to solve the
general case with the method of surrogate functionals.
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A dual method (cont.)

First Step:
. 1
min{J (u) = |Dul (@) + 5 [lu — gl
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A dual method (cont.)

First Step:
. 1
min{J7 (u) = [Dul (2) + o1 [lu = gll,},
... corresponding optimality condition

0€d|Dul (Q) + A (u —g)%.
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A dual method (cont.)

First Step:
. 1
min{J7 (u) = [Dul (2) + o1 [lu = gll,},
... corresponding optimality condition

0€d|Dul (Q) + A (u —g)%.

With
s €0f(zr) <= x€df(s),
this can be rewritten as

wed D] (Q) (W)

where
0 ifve K

+o00 otherwise,

1D ()" (v) = xx (v) = {

and K is the closure of the set
{V-¢£:€€CHYR?), |€(x)| < 1Vz € R?}.
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A dual method (cont.)

First Step:
With w = A~ (g — u)/\ it reads

0€ (—Aw—g/A)+ 30|D:[(2)"(w) inQ
w=20 on Jf).
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A dual method (cont.)
First Step:
With w = A~ (g — u)/\ it reads
0€ (—Aw—g/A)+ 30|D:[(2)"(w) inQ
w=20 on Jf).
In other words w is a minimizer of
— 2
Jw—A 19/)‘||H3<Q)
2
where Hj(Q) = {v e H'(Q): v=00n0Q} and o] 1 q, = Vo

+ 511 @) (w)
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A dual method (cont.)

First Step:
With w = A~ (g — u)/\ it reads

0e(—Aw—g/X\) + %8 |D-| ()" (w) inQ
w=0 on Of).
In other words w is a minimizer of
—1 2
Jw—A 9/)‘||H3<Q)
2
where Hé(Q) = {v € Hl(Q) :v=0o0n 89} and |\v||H5<Q) = [|V]|.
A minimizer w fulfills

+ 511 @) (w)

w =P (A7 g/N),
where P}, is the orthogonal projection on K over Hj(Q), i.e.,

Pl (u) = argmin,, ¢ ||u — vl g -
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A dual method (cont.)

First Step:
With w = A~ (g — u)/\ it reads

0€ (—Aw—g/A)+ 30|D:[(2)"(w) inQ
w=0 on Of).
In other words w is a minimizer of
—1 2
Jw—A 9/)‘||H3<Q)
2
where Hé(Q) = {v € Hl(Q) :v=0o0n 89} and |\v||H3<Q) = [|V]|.
A minimizer w fulfills

+ 511 @) (w)

w =P (A7 g/N),
where P}, is the orthogonal projection on K over Hj(Q), i.e.,

Pl (u) = argmin,, ¢ [[u — vl g -

Hence the solution u of the problem is given by
u=g+A (]P’i,( (Aflg)) .
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A dual method (cont.)
First Step:

Computing the nonlinear projection P ;- (A~ g) amounts to solving the following
problem:

min{H(v(W.p—Aflg)) S peY, pyl<1Vi=1,... N j:l,...,M}.

4]

Using the Karush-Kuhn-Tucker conditions for the above constrained minimization one
can propose the following gradient descent algorithm: for an initial p° = 0, iterate for
n>0

iy =7 (VA(V-p" = A7Ng/N)),

147 ‘(VA (V-pn — A~1g/N),,

n+l
Y

Redoing the convergence proof from the paper of Chambolle we end up with a similar
result:

Theorem
LetT < 1/64. Then, AV - p™ converges to P} (A~ 'g) asn — oo. J
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A dual method (cont.)

Second Step:
The second step is to use the presented algorithm in order to solve

. 1
min{J (u) = |Dul (@) + 55 I Tu ~ gl
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A dual method (cont.)

Second Step:
The second step is to use the presented algorithm in order to solve

. 1
min{J (u) = |Dul (@) + 55 I Tu ~ gl

Approximate a minimizer iteratively by a sequence of minimizers of, what we call,
surrogate functionals [7°. Let 7 > 0 be a fixed stepsize. Starting with an initial
condition u® = g, we solve for k > 0

Wt = argmin, 7 u,0) = 1Dul @ 57 w7 g = (9 + e =D
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A dual method (cont.)

Second Step:
The second step is to use the presented algorithm in order to solve

. 1
min{J (u) = [Dul (2) + 55 [|Tu — gl

Approximate a minimizer iteratively by a sequence of minimizers of, what we call,
surrogate functionals [7°. Let 7 > 0 be a fixed stepsize. Starting with an initial
condition u® = g, we solve for k > 0

2 2
u* ' = argmin, J° (u, u*) = | Dul (Q)Jr% Hu — ukH 1+% Hu — (g + (Id — T)uk)‘ )

Note that:
@ A rigorous derivation of convergence properties is still missing!

@ For image inpainting the surrogate functionals have a fourth order optimality
conditions!
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A dual method (cont.)

Second Step:
Now, the corresponding optimality condition reads

0 a|Dul(Q) + %A*l(u — )+ %A*l (w= g+ (ra—T)t)).
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A dual method (cont.)

Second Step:
Now, the corresponding optimality condition reads

0 a|Dul(Q) + %A*l(u — )+ %A*l (w= g+ (ra—T)t)).

This can be rewritten as

AT (M + 25 “) € 0| Dul (),

T

where g1 = u*, g2 = g+ (Id — T)u".
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A dual method (cont.)

Second Step:
Now, the corresponding optimality condition reads

0 a|Dul(Q) + %A*l(u — )+ %A*l (w= g+ (ra—T)t)).

This can be rewritten as

AT (M + 25 “) € 0| Dul (),

T

where g1 = u*, g2 = g+ (Id — T)u".

Setting
g = g1A+gaT
_ oot
H - AT
we end up with the same inclusion as before, i.e.,
A~ Yg—
A=Y ¢ pu ().
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A dual method (cont.)

A ”unified” algorithm to solve TV-H~! Minimization:

@ In the case T' = Id directly compute a minimizer with
u=g+A(Pig(A79)).

@ Inthe case T # Id iteratively minimize the surrogate functionals
by solving
uP =g+ A(Pig(ATg)).
in every iteration step until the two subsequent iterates »* and
uF*1 are sufficiently close.
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al Approach for TV-H— ! M|

Denoising examples

(a) g=u+wv

Figure: Noisy image with SNR = 25.4
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Dual Approach for TV-

Denoising examples

() TV-L?: v

() TV-H~1: v
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Denoising examples

(a) g=u+v

Figure: Noisy image with SNR = 29.4
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A Dual Approach for TV-H—! Minimization

Denoising examples

(b) TV-L?: u (c) TV-LZ: v

(d) TV-H™': u (e) TV-H™1: v
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Inpainting examples

24(1000) with A = 1073,
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4th order versus 2nd order method

STV-H ! u(1000) with A = 1073.
4TV-L? u(5000) with A = 1075,
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Outline

0 Domain Decomposition for TV-H~! Inpainting
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Domain Decomposition for TV-H ! inpainting

Why domain decomposition?
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Domain Decomposition for TV-H ! inpainting

Why domain decomposition?
Speed up the numerical computation of minimizers! Parallel
Computations are possible!

411
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Domain Decomposition for TV-H ! inpainting (cont.)

Domain Decomposition:

@ Split the domain €2 into two arbitrary nonoverlapping domains
Q= Q; UQy with Q1 N Qe = 0.

@ LetH = L%(Q) and V; = L?(%;), where H = V; @ V4.
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Domain Decomposition for TV-H ! inpainting (cont.)

Domain Decomposition:
@ Split the domain €2 into two arbitrary nonoverlapping domains
Q= Q; UQy with Q1 N Qe = 0.
@ LetH = L%(Q) and V; = L?(%;), where H = V; @ V4.
Pick an initial V; @ V2 3 u{ + 4§ := «° € BV(9), for example u° = 0,
and iterate
n+1
Uy
ug+1

~ argmin, ¢y, J(ur + uj)
2 argminuzevgj(ufﬂ + ug2)
un+1 — u;l-‘rl + u721+1_
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Domain Decomposition for TV-H ! inpainting (cont.)

Domain Decomposition:
@ Split the domain €2 into two arbitrary nonoverlapping domains
Q= Q; UQy with Q1 N Qe = 0.
@ LetH = L%(Q) and V; = L?(%;), where H = V; @ V4.
Pick an initial V; @ V2 3 u{ + 4§ := «° € BV(9), for example u° = 0,
and iterate
ul™ A argmin, oy, J (ur + ub)
uy A argminuzevgj(zﬁﬂ + ug2)

u =

This is implemented by solving the subspace minimization problems
via an oblique thresholding iteration (Fornasier, Schénlieb 08).
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Domain Decomposition for TV-H ! inpainting (cont.)

A minimizer u’f“ of the subproblem on ©; can be iteratively computed

(again by means of surrogate functionals) as

bt = A (Id - Pt]{) (A7 Nz +un) — pn) — us.
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Domain Decomposition for TV-H ! inpainting (cont.)

A minimizer u’f“ of the subproblem on ©; can be iteratively computed

(again by means of surrogate functionals) as
u’f“ =-A (Id — IP)}LK) (Afl(z +ug) — ,un) — Us.
where 7 fulfills

1
n= ;HVQ [PiK (un — A N ug + 2))] -

which can be computed via the iteration

1
eV, nmtl= EHVQ [Pl (™ = A" (ug +2))], m=>0.
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Domain Decomposition for TV-H — L Inpainting

Domain Decomposition for TV-H ! inpainting (cont.)

In sum we solve TV-H ! inpainting by the alternating subspace
minimizations: Pick an initial Vi @ V5 > u)"" + ug™ := w0 € BV(Q), for
example «° = 0, and iterate

n+1,0 n,L
n+1,0+1

. n,M n+1/
= argmin, ¢y, J (w1 +uy uy ) £=0,...,L—1
n+1,0 un,M

U =
2
n+1lm+1 . n+1,L n+1,m o
9 = argmin, ¢y, J5 (u; + u2, u, ) m=0,...,.M —1

1,L 1,M
un—l—l — u?+ 9 +u;l+ b ,
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Domain Decomposition for TV-H — L Inpainting

Domain Decomposition for TV-H ! inpainting (cont.)

In sum we solve TV-H ! inpainting by the alternating subspace
minimizations: Pick an initial Vi @ V5 > u)"" + ug™ := w0 € BV(Q), for
example «° = 0, and iterate

uTH’O = u’f’L
LA argming oy TP (un 4w ut YY) =0, L1
USJFLO _ un,M
P 2 g, T3 ) =0, M
untl = R g oM

where each subminimization problem is computed by the oblique
thresholding algorithm.
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Domain Decomposition for TV-H ! Inp

Domain decomposition results
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Domain Decomposition for TV-H ! Inpainting

Domain decomposition results
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For more details see http://homepage.univie.ac.at/carola.schoenlieb
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