Minicourse - PDE Techniques for Image Inpainting Part III

Carola-Bibiane Schönlieb

Institute for Numerical and Applied Mathematics University of Göttingen

Göttingen - January, 28th 2010

georg-august-universität Göttingen

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III

Göttingen - 28.January.2010 1 / 39

Outline - Numerical Computation of the Inpainted Image

Outline - Numerical Computation of the Inpainted Image

Unconditionally Stable Schemes

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III

Göttingen - 28.January.2010 2 / 39

< ロ > < 同 > < 回 > < 回 >

Outline - Numerical Computation of the Inpainted Image

Outline - Numerical Computation of the Inpainted Image

Unconditionally Stable Schemes

A Dual Approach for TV-H $^{-1}$ Minimization

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III

Göttingen - 28.January.2010 2 / 39

Outline - Numerical Computation of the Inpainted Image

Outline - Numerical Computation of the Inpainted Image

Unconditionally Stable Schemes

Domain Decomposition for TV- H^{-1} Inpainting

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III

Göttingen - 28.January.2010 2 / 39

< ロ > < 同 > < 回 > < 回 > < 回 > <

Outline

Unconditionally Stable Schemes

A Dual Approach for TV-H $^{-1}$ Minimization

3 Domain Decomposition for TV- H^{-1} Inpainting

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III

Göttingen - 28.January.2010 3 / 39

Convexity Splitting

A minimizer u of an energy $\mathcal{J}(u)$ is formally computed as a stationary solution of

$$u_t = -\nabla \mathcal{J}(u)$$
$$u(0) = u_0.$$

Under certain assumptions on \mathcal{J} this is called a gradient system.

Convexity Splitting

A minimizer u of an energy $\mathcal{J}(u)$ is formally computed as a stationary solution of

$$u_t = -\nabla \mathcal{J}(u)$$
$$u(0) = u_0.$$

Under certain assumptions on ${\mathcal J}$ this is called a gradient system.

If $\mathcal{J}(u)$ is convex then only a single equilibrium for the gradient system exists.

Convexity Splitting

A minimizer u of an energy $\mathcal{J}(u)$ is formally computed as a stationary solution of

$$u_t = -\nabla \mathcal{J}(u)$$
$$u(0) = u_0.$$

Under certain assumptions on \mathcal{J} this is called a gradient system.

If $\mathcal{J}(u)$ is convex then only a single equilibrium for the gradient system exists.

If $\mathcal{J}(u)$ is not convex multiple minimizers may exist and the gradient flow can expand u(t). An explicit iterative algorithm, i.e. $u_{k+1} = u_k - \Delta t \nabla \mathcal{J}(u_k)$ in this case may require extremely small time steps, depending of course on \mathcal{J} . For the higher order equations $\mathcal{J}(u_k)$ contains second order derivatives resulting in a restriction of Δt up to order $(\Delta x)^4$.

Convexity splitting (cont.)

The idea of convexity splitting is to derive a semi-impicit iterative scheme that is unconditionally stable.

Eyre (1998): Let

$$\mathcal{J}(u) = \mathcal{J}_c(u) - \mathcal{J}_e(u)$$

where $\mathcal{J}_c, \mathcal{J}_e$ are strictly convex. Under certain assumptions on the functionals, the numerical scheme

$$u_{k+1} = u_k - \Delta t (\nabla \mathcal{J}_c(u_{k+1}) - \nabla \mathcal{J}_e(u_k))$$

is gradient stable for every initial condition $u_0 \in \mathbb{R}$ and all $\Delta t > 0$, and possesses a unique solution for each iteration step.

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Convexity splitting (cont.)

The idea of convexity splitting is to derive a semi-impicit iterative scheme that is unconditionally stable.

Eyre (1998): Let

$$\mathcal{J}(u) = \mathcal{J}_c(u) - \mathcal{J}_e(u)$$

where $\mathcal{J}_c, \mathcal{J}_e$ are strictly convex. Under certain assumptions on the functionals, the numerical scheme

$$u_{k+1} = u_k - \Delta t (\nabla \mathcal{J}_c(u_{k+1}) - \nabla \mathcal{J}_e(u_k))$$

is gradient stable for every initial condition $u_0 \in \mathbb{R}$ and all $\Delta t > 0$, and possesses a unique solution for each iteration step.

Although our inpainting models do not obey a variational principle (the are not gradient flows!), we can apply the convexity splitting method in a modified form ...

Schönlieb (NAM, Göttingen)

(日)

Convexity splitting for Cahn-Hilliard inpainting

$$u_t = \Delta(-\epsilon\Delta u + \frac{1}{\epsilon}F'(u)) + \frac{1}{\lambda}\chi_{\Omega\setminus D}(g-u),$$

where g is a given binary image.

< ロ > < 同 > < 回 > < 回 >

Convexity splitting for Cahn-Hilliard inpainting

$$u_t = \Delta(-\epsilon\Delta u + \frac{1}{\epsilon}F'(u)) + \frac{1}{\lambda}\chi_{\Omega\setminus D}(g-u),$$

where g is a given binary image.

Then the evolution of *u* can be written as the sum of two gradients, i.e.,

$$u_t = -\nabla_{H^{-1}} \mathcal{J}^1(u) + \nabla_{L^2} \mathcal{J}^2(u),$$

where

$$\mathcal{J}^{1}(u) = \int_{\Omega} \frac{\epsilon}{2} |\nabla u|^{2} + \frac{1}{\epsilon} F(u) \, dx,$$

and

$$\mathcal{J}^2(u) = \frac{1}{2\lambda} \int_{\Omega} \chi_{\Omega \setminus D} (g - u)^2 \, dx.$$

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III

Convexity splitting for Cahn-Hilliard inpainting (cont.)

$$\mathcal{J}^{1}(u) = \int_{\Omega} \frac{\epsilon}{2} |\nabla u|^{2} + \frac{1}{\epsilon} F(u) \, dx,$$

 $\mathcal{J}^1 = \mathcal{J}_c^1 - \mathcal{J}_e^1$ with

$$\mathcal{J}_c^1(u) = \int_\Omega \frac{\epsilon}{2} |\nabla u|^2 + \frac{C_1}{2} |u|^2 \ dx,$$

and

$$\mathcal{J}_e^1(u) = \int_{\Omega} -\frac{1}{\epsilon} F(u) + \frac{C_1}{2} \left| u \right|^2 \ dx.$$

Schönlieb (NAM, Göttingen)

Convexity splitting for Cahn-Hilliard inpainting (cont.)

$$\mathcal{J}^2(u) = \frac{1}{2\lambda} \int_{\Omega} \chi_{\Omega \setminus D} (g-u)^2 \, dx.$$

 $\mathcal{J}^2 = \mathcal{J}^2_c - \mathcal{J}^2_e$ with

$$\mathcal{J}_c^2(u) = \int_{\Omega} \frac{C_2}{2} |u|^2 dx,$$

and

$$\mathcal{J}_e^2 = \frac{1}{2\lambda} \int_{\Omega} -\chi_{\Omega \setminus D} (g-u)^2 \ dx + \int_{\Omega} \frac{C_2}{2} \left| u \right|^2 \ dx.$$

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III

Göttingen - 28.January.2010 7 / 39

Convexity splitting for Cahn-Hilliard inpainting (cont.)

The resulting time-stepping scheme is

$$\frac{u_{k+1} - u_k}{\tau} = -\nabla_{H^{-1}}(\mathcal{J}_c^1(u^{k+1}) - \mathcal{J}_e^1(u^k)) - \nabla_{L^2}(\mathcal{J}_c^2(u^{k+1}) - \mathcal{J}_e^2(u^k)),$$

where $\nabla_{H^{-1}}$ and ∇_{L^2} represent the Fréchet derivative with respect to the H^{-1} inner product and the L^2 inner product respectively. This translates to a numerical scheme of the form

$$\frac{u_{k+1} - u_k}{\tau} + \epsilon \Delta \Delta u_{k+1} - C_1 \Delta u_{k+1} + C_2 u_{k+1}$$
$$= \frac{1}{\epsilon} \Delta F'(u_k) - C_1 \Delta u_k + \frac{1}{\lambda} \chi_{\Omega \setminus D}(g - u_k) + C_2 u_k.$$

To make sure that $\mathcal{J}_c^i, \mathcal{J}_e^i, i = 1, 2$, are convex the constants $C_1 > \frac{1}{\epsilon}$, $C_2 > 1/\lambda$.

Convexity splitting for $TV-H^{-1}$ inpainting

A similar technique can be applied to $TV-H^{-1}$ inpainting:

$$\frac{u^{k+1}-u^k}{\tau} + C_1 \Delta^2 u^{k+1} + C_2 u^{k+1} = C_1 \Delta^2 u^k - \Delta (\nabla \cdot (\frac{\nabla u^k}{|\nabla u^k|})) + C_2 u^k + \frac{1}{\lambda} \chi_{\Omega \setminus D} (g - u^k),$$

with constants $C_1 > \frac{1}{\epsilon}$ (where here ϵ comes from the regularization of the total variation), $C_2 > 1/\lambda$.

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III Göttingen - 28.January.2010 9 / 39

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Cahn-Hilliard

Consistency

 $TV-H^{-1}$

Consistency

Schönlieb (NAM, Göttingen) PDEs for Im

PDEs for Image Inpainting Part III

Göttingen - 28.January.2010 10 / 39

< ロ > < 同 > < 回 > < 回 >

Cahn-Hilliard

- Consistency
- Boundedness, i.e., unconditional stability

\mathbf{TV} - \mathbf{H}^{-1}

- Consistency
- Boundedness, i.e., unconditional stability

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III

Göttingen - 28. January. 2010 10 / 39

< 同 > < 三 > < 三

Cahn-Hilliard

- Consistency
- Boundedness, i.e., unconditional stability
- Convergence

\mathbf{TV} - \mathbf{H}^{-1}

- Consistency
- Boundedness, i.e., unconditional stability
- Convergence ... only under additional assumptions on the exact solution!

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III Gö

Göttingen - 28.January.2010 10 / 39

イヨト イヨト イヨト

Cahn-Hilliard

- Consistency
- Boundedness, i.e., unconditional stability
- Convergence

\mathbf{TV} - \mathbf{H}^{-1}

- Consistency
- Boundedness, i.e., unconditional stability
- Convergence ... only under additional assumptions on the exact solution!

Reference:

• C.-B. Schönlieb, A. Bertozzi, *Unconditionally stable schemes for higher order inpainting*, UCLA-CAM report num. 09-78.

< ロ > < 同 > < 回 > < 回 >

Unconditionally stable ... but not fast!

Lets consider again the numerical scheme for $TV-H^{-1}$ inpainting:

$$\begin{aligned} \frac{u^{k+1}-u^k}{\tau} + C_1 \Delta^2 u^{k+1} + \frac{C_2 u^{k+1}}{\tau} &= C_1 \Delta^2 u^k - \Delta (\nabla \cdot (\frac{\nabla u^k}{|\nabla u^k|})) \\ &+ \frac{C_2 u^k}{\tau} + \frac{1}{\lambda} \chi_{\Omega \setminus D} (g - u^k), \end{aligned}$$

Unconditionally stable ... but not fast!

Lets consider again the numerical scheme for TV- H^{-1} inpainting:

$$\begin{aligned} \frac{u^{k+1}-u^k}{\tau} + C_1 \Delta^2 u^{k+1} + \frac{C_2 u^{k+1}}{\tau} &= C_1 \Delta^2 u^k - \Delta (\nabla \cdot (\frac{\nabla u^k}{|\nabla u^k|})) \\ &+ \frac{C_2 u^k}{\lambda} + \frac{1}{\lambda} \chi_{\Omega \backslash D} (g - u^k), \end{aligned}$$

The constant C_2 has to be chosen such that $C_2 > 1/\lambda \dots$

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III Göttingen - 2

Göttingen - 28.January.2010 11 / 39

3

Unconditionally stable ... but not fast!

Lets consider again the numerical scheme for TV- H^{-1} inpainting:

$$\begin{aligned} \frac{u^{k+1}-u^k}{\tau} + C_1 \Delta^2 u^{k+1} + C_2 u^{k+1} &= C_1 \Delta^2 u^k - \Delta (\nabla \cdot (\frac{\nabla u^k}{|\nabla u^k|})) \\ &+ C_2 u^k + \frac{1}{\lambda} \chi_{\Omega \setminus D} (g - u^k), \end{aligned}$$

The constant C_2 has to be chosen such that $C_2 > 1/\lambda \dots$

... since usually in inpainting tasks λ is chosen comparatively small, e.g., $\lambda = 10^{-3}$, the condition on C_2 damps the convergence of this method \Rightarrow converging slow!

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III Göttingen - 28.January.2010 11 / 39

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Outline

Unconditionally Stable Schemes

A Dual Approach for TV-H⁻¹ Minimization

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III

Göttingen - 28.January.2010 12 / 39

TV- H^{-1} Minimization

For a given function $g \in L^2(\Omega)$ we are interested in the numerical realization of the following minimization problem

$$\min_{u \in BV(\Omega)} \mathcal{J}(u) = |Du|(\Omega) + \frac{1}{2\lambda} ||Tu - g||_{-1}^2,$$

where $T \in \mathcal{L}(L^2(\Omega))$ is a bounded linear operator and $\lambda > 0$ is a tuning parameter. The function $|Du|(\Omega)$ is the total variation of u and $\|.\|_{-1}$ is the norm in $H^{-1}(\Omega)$, the dual of $H_0^1(\Omega)$.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

TV- H^{-1} Minimization

For a given function $g \in L^2(\Omega)$ we are interested in the numerical realization of the following minimization problem

$$\min_{u \in BV(\Omega)} \mathcal{J}(u) = |Du|(\Omega) + \frac{1}{2\lambda} ||Tu - g||_{-1}^2,$$

where $T \in \mathcal{L}(L^2(\Omega))$ is a bounded linear operator and $\lambda > 0$ is a tuning parameter. The function $|Du|(\Omega)$ is the total variation of u and $\|.\|_{-1}$ is the norm in $H^{-1}(\Omega)$, the dual of $H_0^1(\Omega)$.

This results in a fourth order optimality condition, e.g., if T = Id:

$$\Delta p + \frac{1}{\lambda}(g-u) = 0, \quad p \in \partial |Du|(\Omega),$$

Numerical Solution of TV- H^{-1} Minimization

We want to numerically solve the minimization problem

$$\min_{u \in BV(\Omega)} \mathcal{J}(u) = |Du|(\Omega) + \frac{1}{2\lambda} ||Tu - g||_{-1}^2.$$

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III Göttingen - 28

Göttingen - 28. January. 2010 14 / 39

・ロット (雪) (日) (日)

Numerical Solution of TV- H^{-1} Minimization

We want to numerically solve the minimization problem

$$\min_{u \in BV(\Omega)} \mathcal{J}(u) = |Du|(\Omega) + \frac{1}{2\lambda} ||Tu - g||_{-1}^2.$$

Usually: the numerical solution of TV- H^{-1} minimization depends on the specific problem at hand.

< ロ > < 同 > < 回 > < 回 > .

The Approach of Lieu & Vese for Denoising/Decomposition

TV- H^{-1} denoising/decomposition is solved by using the Fourier representation of the H^{-1} norm on the whole \mathbb{R}^d , $d \ge 1$. Thereby the space $H^{-1}(\mathbb{R}^d)$ is defined as a Hilbert space equipped with the inner product

$$\langle f,g
angle_{-1} = \int \left(1+|\xi|^2\right)^{-1} \hat{f}\bar{\hat{g}} d\xi$$

and associated norm $\|f\|_{-1} = \sqrt{\langle f,f
angle_{-1}}.$

(日)

15/39

The Approach of Lieu & Vese for Denoising/Decomposition

TV- H^{-1} denoising/decomposition is solved by using the Fourier representation of the H^{-1} norm on the whole \mathbb{R}^d , $d \ge 1$. Thereby the space $H^{-1}(\mathbb{R}^d)$ is defined as a Hilbert space equipped with the inner product

$$\langle f,g\rangle_{-1} = \int \left(1 + |\xi|^2\right)^{-1} \hat{f}\bar{\hat{g}} d\xi$$

and associated norm $||f||_{-1} = \sqrt{\langle f, f \rangle_{-1}}$.

only have to solve a 2nd order PDE

$$\begin{split} \lambda \nabla \cdot \big(\frac{\nabla u}{|\nabla u|} \big) + \left[2 \ Re \bigg\{ \underbrace{\frac{\bar{\hat{g}} - \bar{\hat{u}}}{(1 + |\xi|^2)^{-1}}}_{|\nabla u|} \bigg\} \right] &= 0 \quad \text{ in } \Omega \\ \frac{\nabla u}{|\nabla u|} \cdot \vec{n} &= 0 \qquad \qquad \text{ on } \partial \Omega \\ u &= 0 \qquad \qquad \text{ outside } \bar{\Omega}, \end{split}$$

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III

Göttingen - 28. January. 2010 15 / 39

Convexity splitting for $TV-H^{-1}$ inpainting¹

Convexity splitting: iterative scheme for TV- H^{-1} inpainting that is unconditionally stable:

¹joint work with Andrea Bertozzi

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III

Göttingen - 28.January.2010 16 / 39

Convexity splitting for $TV-H^{-1}$ inpainting¹

Convexity splitting: iterative scheme for $TV-H^{-1}$ inpainting that is unconditionally stable:

Apply convexity splitting to the two energies

$$\mathcal{J}^{1}(u) = \int_{\Omega} |\nabla u| \, dx, \quad \mathcal{J}^{2}(u) = \frac{1}{2\lambda} \int_{\Omega} \chi_{\Omega \setminus D} (u - g)^{2}$$

¹ joint work with Andrea Bertozzi

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III

Göttingen - 28.January.2010 16 / 39

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Convexity splitting for $TV-H^{-1}$ inpainting¹

Convexity splitting: iterative scheme for $TV-H^{-1}$ inpainting that is unconditionally stable:

Apply convexity splitting to the two energies

$$\mathcal{J}^1(u) = \int_{\Omega} |\nabla u| \, dx, \quad \mathcal{J}^2(u) = \frac{1}{2\lambda} \int_{\Omega} \chi_{\Omega \setminus D} (u - g)^2$$

$$\frac{u^{k+1}-u^k}{\tau} + C_1 \Delta^2 u^{k+1} + C_2 u^{k+1} = C_1 \Delta^2 u^k - \Delta (\nabla \cdot (\frac{\nabla u^k}{|\nabla u^k|})) + C_2 u^k + \frac{1}{\lambda} \chi_{\Omega \setminus D} (g - u^k),$$

with constants $C_1 > \frac{1}{\epsilon}$ (where here ϵ comes from the regularization of the total variation), $C_2 > 1/\lambda$.

 ¹joint work with Andrea Bertozzi
 < □ > < ⊕ > < ⊕ > < ≧ > < ≧ > < ≧ > < ≥ < ⊙ < ⊙</td>

 Schönlieb (NAM, Göttingen)
 PDEs for Image Inpainting Part III
 Göttingen - 28.January.2010
 16/39

A dual method

- Since usually in inpainting tasks λ is chosen comparatively small, e.g., λ = 10⁻³, the condition on C₂ damps the convergence of this method ⇒ although unconditionally stable, **converging slow**!...
- ... this will be similar for the new approach, but with the new approach we will be able to apply domain decomposition to solve the minimization problem ⇒ Parallelize the numerical computation ⇒ Shorten the computational time.
- The new approach will give us a "**unified**" **algorithm** to solve TV-*H*⁻¹ minimization.

A dual method (cont.)

Chambolle (04): A dual method to numerically compute a minimizer of

$$\mathcal{J}(u) = \frac{1}{2\lambda} \left\| u - g \right\|_{L^2(\Omega)}^2 + \left| Du \right|(\Omega).$$

A dual method (cont.)

Chambolle (04): A dual method to numerically compute a minimizer of

$$\mathcal{J}(u) = \frac{1}{2\lambda} \left\| u - g \right\|_{L^2(\Omega)}^2 + \left| Du \right|(\Omega).$$

It amounts to compute the minimizer u of \mathcal{J} as

$$u = g - \mathbb{P}_{\lambda K}(g),$$

where $\mathbb{P}_{\lambda K}$ denotes the orthogonal projection over $L^2(\Omega)$ on the convex set K which is the closure of the set

$$\left\{\nabla \cdot \xi : \xi \in C_c^1(\Omega; \mathbb{R}^2), \ |\xi(x)| \le 1 \ \forall x \in \mathbb{R}^2\right\}.$$

Schönlieb (NAM, Göttingen)

< ロ > < 同 > < 回 > < 回 >

18/39
Chambolle (04): A dual method to numerically compute a minimizer of

$$\mathcal{J}(u) = \frac{1}{2\lambda} \left\| u - g \right\|_{L^2(\Omega)}^2 + \left| Du \right|(\Omega).$$

It amounts to compute the minimizer u of \mathcal{J} as

$$u = g - \mathbb{P}_{\lambda K}(g),$$

where $\mathbb{P}_{\lambda K}$ denotes the orthogonal projection over $L^2(\Omega)$ on the convex set K which is the closure of the set

$$\left\{\nabla \cdot \xi : \xi \in C_c^1(\Omega; \mathbb{R}^2), \ |\xi(x)| \le 1 \ \forall x \in \mathbb{R}^2\right\}.$$

To numerically compute the projection $\mathbb{P}_{\lambda K}(g)$ he uses a fixed point algorithm.

Schönlieb (NAM, Göttingen)

18 / 39

... now we want to do something similar for TV- H^{-1} minimization, i.e., we want to numerically solve

$$\min_{u \in BV(\Omega)} \mathcal{J}(u) = |Du|(\Omega) + \frac{1}{2\lambda} ||Tu - g||_{-1}^2.$$

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III Göttingen - 28. Janu

Göttingen - 28. January. 2010 19 / 39

... now we want to do something similar for TV- H^{-1} minimization, i.e., we want to numerically solve

$$\min_{u \in BV(\Omega)} \mathcal{J}(u) = |Du|(\Omega) + \frac{1}{2\lambda} ||Tu - g||_{-1}^2.$$

- First Step: Solve the simplified problem when T = Id
- Second Step: Use the solution for T = Id in order to solve the general case with the method of surrogate functionals.

Schönlieb (NAM, Göttingen)

First Step:

$$\min_{u} \{ \mathcal{J}(u) = |Du|(\Omega) + \frac{1}{2\lambda} \|u - g\|_{-1}^{2} \},\$$

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III 0

Göttingen - 28.January.2010 20 / 39

э

First Step:

$$\min_{u} \{ \mathcal{J}(u) = |Du|(\Omega) + \frac{1}{2\lambda} \|u - g\|_{-1}^{2} \},\$$

... corresponding optimality condition

$$0 \in \partial |Du|(\Omega) + \Delta^{-1}(u-g)\frac{1}{\lambda}.$$

э

First Step:

$$\min_{u} \{ \mathcal{J}(u) = |Du|(\Omega) + \frac{1}{2\lambda} \|u - g\|_{-1}^{2} \},\$$

... corresponding optimality condition

$$0 \in \partial |Du|(\Omega) + \Delta^{-1}(u-g)\frac{1}{\lambda}.$$

With

$$s \in \partial f(x) \iff x \in \partial f^*(s),$$

this can be rewritten as

$$u \in \partial |D \cdot | (\Omega)^* \left(\frac{\Delta^{-1}(g-u)}{\lambda} \right).$$

where

$$|D \cdot | (\Omega)^*(v) = \chi_K(v) = \begin{cases} 0 & \text{if } v \in K \\ +\infty & \text{otherwise,} \end{cases}$$

and K is the closure of the set

$$\left\{\nabla \cdot \xi : \xi \in C_c^1(\Omega; \mathbb{R}^2), \ |\xi(x)| \le 1 \ \forall x \in \mathbb{R}^2\right\}.$$

First Step: With $w = \Delta^{-1}(g - u)/\lambda$ it reads $\begin{array}{cc} 0 \in (-\Delta w - g/\lambda) + \frac{1}{\lambda}\partial \left| D \cdot \right|(\Omega)^*(w) & \text{in } \Omega \\ w = 0 & \text{on } \partial\Omega. \end{array}$

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III G

Göttingen - 28.January.2010 21 / 39

3

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

First Step: With $w = \Delta^{-1}(g - u)/\lambda$ it reads $\begin{array}{cc} 0 \in (-\Delta w - g/\lambda) + \frac{1}{\lambda}\partial \left| D \cdot \right|(\Omega)^*(w) & \text{in } \Omega \\ w = 0 & \text{on } \partial\Omega. \end{array}$

In other words w is a minimizer of

Schönlieb (NAM. Göttingen)

$$\begin{split} \frac{\left\|w-\Delta^{-1}g/\lambda\right\|_{H_0^1(\Omega)}^2}{2} + \frac{1}{\lambda} \left|D\cdot\right|(\Omega)^*(w),\\ \text{where } H_0^1(\Omega) = \left\{v\in H^1(\Omega): \; v=0 \text{ on } \partial\Omega\right\} \text{ and } \|v\|_{H_0^1(\Omega)} = \|\nabla v\|. \end{split}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

First Step: With $w = \Delta^{-1}(g - u)/\lambda$ it reads $0 \in (-\Delta w - g/\lambda) + \frac{1}{\lambda}\partial |D \cdot| (\Omega)^*(w)$ in Ω w = 0 on $\partial\Omega$.

In other words w is a minimizer of

$$\frac{\left\|w - \Delta^{-1}g/\lambda\right\|_{H_0^1(\Omega)}^2}{2} + \frac{1}{\lambda} \left|D \cdot\right|(\Omega)^*(w),$$

where $H_0^1(\Omega) = \left\{ v \in H^1(\Omega) : v = 0 \text{ on } \partial\Omega \right\}$ and $\|v\|_{H_0^1(\Omega)} = \|\nabla v\|$. A minimizer w fulfills

$$w = \mathbb{P}^1_K(\Delta^{-1}g/\lambda),$$

where \mathbb{P}^1_K is the orthogonal projection on K over $H^1_0(\Omega)$, i.e.,

$$\mathbb{P}^{1}_{K}(u) = \operatorname{argmin}_{v \in K} \|u - v\|_{H^{1}_{0}(\Omega)}.$$

・ロッ ・雪 ・ ・ ヨ ・ ・

-

First Step: With $w = \Delta^{-1}(g - u)/\lambda$ it reads $0 \in (-\Delta w - g/\lambda) + \frac{1}{\lambda}\partial |D \cdot| (\Omega)^*(w)$ in Ω w = 0 on $\partial\Omega$.

In other words w is a minimizer of

$$\frac{\left\|w - \Delta^{-1}g/\lambda\right\|_{H_0^1(\Omega)}^2}{2} + \frac{1}{\lambda} \left|D \cdot\right|(\Omega)^*(w),$$

where $H_0^1(\Omega) = \left\{ v \in H^1(\Omega) : v = 0 \text{ on } \partial \Omega \right\}$ and $\|v\|_{H_0^1(\Omega)} = \|\nabla v\|$. A minimizer w fulfills

$$w = \mathbb{P}^1_K(\Delta^{-1}g/\lambda),$$

where \mathbb{P}^1_K is the orthogonal projection on K over $H^1_0(\Omega)$, i.e.,

$$\mathbb{P}^1_K(u) = \operatorname{argmin}_{v \in K} \|u - v\|_{H^1_0(\Omega)}.$$

Hence the solution u of the problem is given by

$$u = g + \Delta \left(\mathbb{P}^1_{\lambda K}(\Delta^{-1}g) \right)$$

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III

-

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

First Step:

Computing the nonlinear projection $\mathbb{P}^1_{\lambda K}(\Delta^{-1}g)$ amounts to solving the following problem:

$$\min\left\{\left\|\left(\nabla\left(\lambda\nabla\cdot p-\Delta^{-1}g\right)\right)_{i,j}\right\|^{2}:\ p\in Y,\ |p_{i,j}|\leq 1\ \forall i=1,\ldots,N;\ j=1,\ldots,M\right\}.$$

Using the Karush-Kuhn-Tucker conditions for the above constrained minimization one can propose the following gradient descent algorithm: for an initial $p^0 = 0$, iterate for $n \ge 0$

$$p_{i,j}^{n+1} = \frac{p_{i,j}^n - \tau \left(\nabla \Delta \left(\nabla \cdot p^n - \Delta^{-1} g / \lambda \right) \right)_{i,j}}{1 + \tau \left| \left(\nabla \Delta \left(\nabla \cdot p^n - \Delta^{-1} g / \lambda \right) \right)_{i,j} \right|}.$$

Redoing the convergence proof from the paper of Chambolle we end up with a similar result:

Theorem

Let
$$\tau \leq 1/64$$
. Then, $\lambda \nabla \cdot p^n$ converges to $\mathbb{P}^1_{\lambda K}(\Delta^{-1}g)$ as $n \to \infty$.

Second Step:

The second step is to use the presented algorithm in order to solve

$$\min_{u} \{ \mathcal{J}(u) = |Du|(\Omega) + \frac{1}{2\lambda} \|Tu - g\|_{-1}^{2} \}.$$

Second Step:

The second step is to use the presented algorithm in order to solve

$$\min_{u} \{ \mathcal{J}(u) = |Du|(\Omega) + \frac{1}{2\lambda} \|Tu - g\|_{-1}^{2} \}.$$

Approximate a minimizer iteratively by a sequence of minimizers of, what we call, surrogate functionals \mathcal{J}^s . Let $\tau > 0$ be a fixed stepsize. Starting with an initial condition $u^0 = g$, we solve for $k \ge 0$

$$u^{k+1} = \operatorname{argmin}_{u} \mathcal{J}^{s}(u, u^{k}) = \left| Du \right|(\Omega) + \frac{1}{2\tau} \left\| u - u^{k} \right\|_{-1}^{2} + \frac{1}{2\lambda} \left\| u - \left(g + (Id - T)u^{k} \right) \right\|_{-1}^{2}$$

Second Step:

The second step is to use the presented algorithm in order to solve

$$\min_{u} \{ \mathcal{J}(u) = |Du|(\Omega) + \frac{1}{2\lambda} \|Tu - g\|_{-1}^{2} \}.$$

Approximate a minimizer iteratively by a sequence of minimizers of, what we call, surrogate functionals \mathcal{J}^s . Let $\tau > 0$ be a fixed stepsize. Starting with an initial condition $u^0 = g$, we solve for $k \ge 0$

$$u^{k+1} = \operatorname{argmin}_{u} \mathcal{J}^{s}(u, u^{k}) = |Du|(\Omega) + \frac{1}{2\tau} \left\| u - u^{k} \right\|_{-1}^{2} + \frac{1}{2\lambda} \left\| u - \left(g + (Id - T)u^{k} \right) \right\|_{-1}^{2}$$

Note that:

- A rigorous derivation of convergence properties is still missing!
- For image inpainting the surrogate functionals have a fourth order optimality conditions!

Second Step:

Now, the corresponding optimality condition reads

$$0 \in \partial \left| Du \right| (\Omega) + \frac{1}{\tau} \Delta^{-1} (u - u^k) + \frac{1}{\lambda} \Delta^{-1} \left(u - \left(g + (Id - T)u^k \right) \right).$$

Second Step:

Now, the corresponding optimality condition reads

$$0 \in \partial \left| Du \right| (\Omega) + \frac{1}{\tau} \Delta^{-1} (u - u^k) + \frac{1}{\lambda} \Delta^{-1} \left(u - \left(g + (Id - T)u^k \right) \right).$$

This can be rewritten as

$$\Delta^{-1}\left(\frac{g_1-u}{\tau}+\frac{g_2-u}{\lambda}\right)\in\partial\left|Du\right|(\Omega),$$

where $g_1 = u^k$, $g_2 = g + (Id - T)u^k$.

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III Göttingen - 28.January.2010 24 / 39

・ロト ・回ト ・ヨト ・ヨト

Second Step:

Now, the corresponding optimality condition reads

$$0 \in \partial \left| Du \right| (\Omega) + \frac{1}{\tau} \Delta^{-1} (u - u^k) + \frac{1}{\lambda} \Delta^{-1} \left(u - \left(g + (Id - T)u^k \right) \right).$$

This can be rewritten as

$$\Delta^{-1}\left(\frac{g_1-u}{\tau}+\frac{g_2-u}{\lambda}\right)\in\partial\left|Du\right|(\Omega),$$

where $g_1 = u^k$, $g_2 = g + (Id - T)u^k$. Setting

$$g = \frac{g_1 \lambda + g_2 \tau}{\lambda + \tau}$$
$$\mu = \frac{\lambda \tau}{\lambda + \tau},$$

we end up with the same inclusion as before, i.e.,

$$\frac{\Delta^{-1}(g-u)}{\mu} \in \partial \left| Du \right|(\Omega).$$

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III

Göttingen - 28. January. 2010 24 / 39

A "unified" algorithm to solve TV- H^{-1} Minimization:

• In the case T = Id directly compute a minimizer with

$$u = g + \Delta \left(\mathbb{P}^1_{\lambda K}(\Delta^{-1}g) \right).$$

 In the case T ≠ Id iteratively minimize the surrogate functionals by solving

$$u^k = g + \Delta \left(\mathbb{P}^1_{\lambda K}(\Delta^{-1}g) \right).$$

in every iteration step until the two subsequent iterates u^k and u^{k+1} are sufficiently close.

Schönlieb (NAM, Göttingen)

25 / 39

(a) g = u + v

Figure: Noisy image with SNR = 25.4

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III

Göttingen - 28.January.2010 26 / 39

(d) TV-H⁻¹: u

(e) TV- H^{-1} : v

Schönlieb (NAM, Göttingen)

Göttingen - 28.January.2010 27 / 39

<ロ> <同> <同> < 同> < 同>

(a) g = u + v

Figure: Noisy image with SNR = 29.4

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III

Göttingen - 28.January.2010

28/39

< ロ > < 同 > < 回 > < 回 >

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III Göttingen -

Göttingen - 28.January.2010 29 / 39

Inpainting examples

²u(1000) with
$$\lambda = 10^{-3}$$

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III

Göttingen - 28.January.2010 30 / 39

< ロ > < 同 > < 回 > < 回 >

A Dual Approach for TV-H⁻¹ Minimization

4th order versus 2nd order method

³TV- H^{-1} u(1000) with $\lambda = 10^{-3}$. ⁴TV- L^2 u(5000) with $\lambda = 10^{-3}$.

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III

□ ▶ ◀ 翻 ▶ ◀ ≣ ▶ ◀ ≣ ▶ ≣ ዏ � ⊂ Göttingen - 28.January.2010 31 / 39

Outline

Unconditionally Stable Schemes

A Dual Approach for TV-H $^{-1}$ Minimization

3 Domain Decomposition for TV- H^{-1} Inpainting

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III

Göttingen - 28.January.2010 32 / 39

Why domain decomposition?

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III

Göttingen - 28.January.2010 33 / 39

Why domain decomposition?

Speed up the numerical computation of minimizers! Parallel Computations are possible!

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III

Göttingen - 28.January.2010 33 / 39

イヨト イヨト イヨト

Domain Decomposition:

- Split the domain Ω into two arbitrary nonoverlapping domains $\Omega = \Omega_1 \cup \Omega_2$ with $\Omega_1 \cap \Omega_2 = \emptyset$.
- Let $\mathcal{H} = L^2(\Omega)$ and $V_i = L^2(\Omega_i)$, where $\mathcal{H} = V_1 \oplus V_2$.

イロト イポト イヨト イヨト

Domain Decomposition:

- Split the domain Ω into two arbitrary nonoverlapping domains $\Omega = \Omega_1 \cup \Omega_2$ with $\Omega_1 \cap \Omega_2 = \emptyset$.
- Let $\mathcal{H} = L^2(\Omega)$ and $V_i = L^2(\Omega_i)$, where $\mathcal{H} = V_1 \oplus V_2$.

Pick an initial $V_1 \oplus V_2 \ni u_1^0 + u_2^0 := u^0 \in BV(\Omega)$, for example $u^0 = 0$, and iterate

$$\begin{cases} u_1^{n+1} \approx \operatorname{argmin}_{u_1 \in V_1} \mathcal{J}(u_1 + u_2^n) \\ u_2^{n+1} \approx \operatorname{argmin}_{u_2 \in V_2} \mathcal{J}(u_1^{n+1} + u_2) \\ u^{n+1} := u_1^{n+1} + u_2^{n+1}. \end{cases}$$

Schönlieb (NAM, Göttingen)

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Domain Decomposition:

- Split the domain Ω into two arbitrary nonoverlapping domains $\Omega = \Omega_1 \cup \Omega_2$ with $\Omega_1 \cap \Omega_2 = \emptyset$.
- Let $\mathcal{H} = L^2(\Omega)$ and $V_i = L^2(\Omega_i)$, where $\mathcal{H} = V_1 \oplus V_2$.

Pick an initial $V_1 \oplus V_2 \ni u_1^0 + u_2^0 := u^0 \in BV(\Omega)$, for example $u^0 = 0$, and iterate

$$\begin{cases} u_1^{n+1} \approx \operatorname{argmin}_{u_1 \in V_1} \mathcal{J}(u_1 + u_2^n) \\ u_2^{n+1} \approx \operatorname{argmin}_{u_2 \in V_2} \mathcal{J}(u_1^{n+1} + u_2) \\ u^{n+1} := u_1^{n+1} + u_2^{n+1}. \end{cases}$$

This is implemented by solving the subspace minimization problems via an **oblique thresholding iteration** (Fornasier, Schönlieb 08).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A minimizer u_1^{k+1} of the subproblem on Ω_1 can be iteratively computed (again by means of surrogate functionals) as

$$u_1^{k+1} = -\Delta \left(Id - \mathbb{P}^1_{\mu K} \right) \left(\Delta^{-1}(z+u_2) - \mu \eta \right) - u_2.$$

イロト イポト イヨト イヨト

A minimizer u_1^{k+1} of the subproblem on Ω_1 can be iteratively computed (again by means of surrogate functionals) as

$$u_1^{k+1} = -\Delta \left(Id - \mathbb{P}^1_{\mu K} \right) \left(\Delta^{-1}(z+u_2) - \mu \eta \right) - u_2.$$

where η fulfills

$$\eta = \frac{1}{\mu} \Pi_{V_2} \left[\mathbb{P}^1_{\mu K} \left(\mu \eta - \Delta^{-1} (u_2 + z) \right) \right].$$

which can be computed via the iteration

$$\eta^0 \in V_2, \quad \eta^{m+1} = \frac{1}{\mu} \prod_{V_2} \left[\mathbb{P}^1_{\mu K} \left(\mu \eta^m - \Delta^{-1} (u_2 + z) \right) \right], \quad m \ge 0.$$

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III Göttingen - 28.January.2010 35 / 39

In sum we solve TV- H^{-1} inpainting by the alternating subspace minimizations: Pick an initial $V_1 \oplus V_2 \ni u_1^{0,L} + u_2^{0,M} := u^0 \in \mathcal{B}V(\Omega)$, for example $u^0 = 0$, and iterate

$$\begin{cases} \begin{cases} u_1^{n+1,0} = u_1^{n,L} \\ u_1^{n+1,\ell+1} = \operatorname{argmin}_{u_1 \in V_1} \mathcal{J}_1^s(u_1 + u_2^{n,M}, u_1^{n+1,\ell}) & \ell = 0, \dots, L-1 \\ u_2^{n+1,0} = u_2^{n,M} \\ u_2^{n+1,m+1} = \operatorname{argmin}_{u_2 \in V_2} \mathcal{J}_2^s(u_1^{n+1,L} + u_2, u_2^{n+1,m}) & m = 0, \dots, M-1 \\ u^{n+1} := u_1^{n+1,L} + u_2^{n+1,M}, \end{cases}$$

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III Göttingen - 28.January.2010 36 / 39

• □ ▶ • • □ ▶ • • □ ▶ • • □ ▶ •

In sum we solve TV- H^{-1} inpainting by the alternating subspace minimizations: Pick an initial $V_1 \oplus V_2 \ni u_1^{0,L} + u_2^{0,M} := u^0 \in \mathcal{B}V(\Omega)$, for example $u^0 = 0$, and iterate

$$\begin{cases} \begin{cases} u_1^{n+1,0} = u_1^{n,L} \\ u_1^{n+1,\ell+1} = \operatorname{argmin}_{u_1 \in V_1} \mathcal{J}_1^s(u_1 + u_2^{n,M}, u_1^{n+1,\ell}) & \ell = 0, \dots, L-1 \\ u_2^{n+1,0} = u_2^{n,M} \\ u_2^{n+1,m+1} = \operatorname{argmin}_{u_2 \in V_2} \mathcal{J}_2^s(u_1^{n+1,L} + u_2, u_2^{n+1,m}) & m = 0, \dots, M-1 \\ u^{n+1} := u_1^{n+1,L} + u_2^{n+1,M}, \end{cases} \end{cases}$$

where each subminimization problem is computed by the oblique thresholding algorithm.

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III Göttingen - 28.January.2010

y.2010 36 / 39

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

Domain decomposition results

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III Göttingen - 28

Göttingen - 28. January. 2010 37 / 39

3 ∃ > <</p>

< 🗇 🕨

Domain decomposition results

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III

Göttingen - 28.January.2010 38 / 39
The End

References

- C.-B. Schönlieb, Total variation minimization with an H⁻¹ constraint, CRM Series 9, Singularities in Nonlinear Evolution Phenomena and Applications Proceedings, Scuola Normale Superiore Pisa 2009, pp. 201-232.
- M. Fornasier, C.-B. Schönlieb, Subspace correction methods for total variation and l₁- minimization, SIAM J. Numer. Anal., Vol.47, No.5, pp. 3397-3428 (2009).
- C.-B. Schönlieb, A. Bertozzi, Unconditionally stable schemes for higher order inpainting, UCLA-CAM report num. 09-78, 32 p.
- The Matlab Code for the domain decomposition method is available at: http://homepage.univie.ac.at/ carola.schoenlieb/webpage_ tvdode/tv_dode_numerics.htm

For more details see http://homepage.univie.ac.at/carola.schoenlieb

or write to: c.b.schonlieb@damtp.cam.ac.uk

Schönlieb (NAM, Göttingen)

PDEs for Image Inpainting Part III

Göttingen - 28.January.2010 39 / 39