Minicourse - PDE Techniques for Image Inpainting Part III

Carola-Bibiane Schönlieb

Institute for Numerical and Applied Mathematics
University of Göttingen

Göttingen - January, 28th 2010

GEORG-AUGUST-UNIVERSITÄT
GÖTTINGEN

Outline - Numerical Computation of the Inpainted Image

(1) Unconditionally Stable Schemes

Outline - Numerical Computation of the Inpainted Image

(1) Unconditionally Stable Schemes
(2) A Dual Approach for TV-H ${ }^{-1}$ Minimization

Outline - Numerical Computation of the Inpainted Image

(1) Unconditionally Stable Schemes
(2) A Dual Approach for TV- H^{-1} Minimization
(3) Domain Decomposition for TV- H^{-1} Inpainting

Outline

(1) Unconditionally Stable Schemes

(2) A Dual Approach for $\mathrm{TV}-\mathrm{H}^{-1}$ Minimization

(3) Domain Decomposition for TV- H^{-1} Inpainting

Convexity Splitting

A minimizer u of an energy $\mathcal{J}(u)$ is formally computed as a stationary solution of

$$
\begin{aligned}
& u_{t}=-\nabla \mathcal{J}(u) \\
& u(0)=u_{0} .
\end{aligned}
$$

Under certain assumptions on \mathcal{J} this is called a gradient system.

Convexity Splitting

A minimizer u of an energy $\mathcal{J}(u)$ is formally computed as a stationary solution of

$$
\begin{aligned}
& u_{t}=-\nabla \mathcal{J}(u) \\
& u(0)=u_{0} .
\end{aligned}
$$

Under certain assumptions on \mathcal{J} this is called a gradient system. If $\mathcal{J}(u)$ is convex then only a single equilibrium for the gradient system exists.

Convexity Splitting

A minimizer u of an energy $\mathcal{J}(u)$ is formally computed as a stationary solution of

$$
\begin{aligned}
& u_{t}=-\nabla \mathcal{J}(u) \\
& u(0)=u_{0}
\end{aligned}
$$

Under certain assumptions on \mathcal{J} this is called a gradient system.
If $\mathcal{J}(u)$ is convex then only a single equilibrium for the gradient system exists.
If $\mathcal{J}(u)$ is not convex multiple minimizers may exist and the gradient flow can expand $u(t)$. An explicit iterative algorithm, i.e. $u_{k+1}=u_{k}-\Delta t \nabla \mathcal{J}\left(u_{k}\right)$ in this case may require extremely small time steps, depending of course on \mathcal{J}. For the higher order equations $\mathcal{J}\left(u_{k}\right)$ contains second order derivatives resulting in a restriction of $\Delta \mathrm{t}$ up to order $(\Delta \mathrm{x})^{4}$.

Convexity splitting (cont.)

The idea of convexity splitting is to derive a semi-impicit iterative scheme that is unconditionally stable.
Eyre (1998): Let

$$
\mathcal{J}(u)=\mathcal{J}_{c}(u)-\mathcal{J}_{e}(u)
$$

where $\mathcal{J}_{c}, \mathcal{J}_{e}$ are strictly convex. Under certain assumptions on the functionals, the numerical scheme

$$
u_{k+1}=u_{k}-\Delta t\left(\nabla \mathcal{J}_{c}\left(u_{k+1}\right)-\nabla \mathcal{J}_{e}\left(u_{k}\right)\right)
$$

is gradient stable for every initial condition $u_{0} \in \mathbb{R}$ and all $\Delta t>0$, and possesses a unique solution for each iteration step.

Convexity splitting (cont.)

The idea of convexity splitting is to derive a semi-impicit iterative scheme that is unconditionally stable.
Eyre (1998): Let

$$
\mathcal{J}(u)=\mathcal{J}_{c}(u)-\mathcal{J}_{e}(u)
$$

where $\mathcal{J}_{c}, \mathcal{J}_{e}$ are strictly convex. Under certain assumptions on the functionals, the numerical scheme

$$
u_{k+1}=u_{k}-\Delta t\left(\nabla \mathcal{J}_{c}\left(u_{k+1}\right)-\nabla \mathcal{J}_{e}\left(u_{k}\right)\right)
$$

is gradient stable for every initial condition $u_{0} \in \mathbb{R}$ and all $\Delta t>0$, and possesses a unique solution for each iteration step.
Although our inpainting models do not obey a variational principle (the are not gradient flows!), we can apply the convexity splitting method in a modified form ...

Convexity splitting for Cahn-Hilliard inpainting

$$
u_{t}=\Delta\left(-\epsilon \Delta u+\frac{1}{\epsilon} F^{\prime}(u)\right)+\frac{1}{\lambda} \chi_{\Omega \backslash D}(g-u),
$$

where g is a given binary image.

Convexity splitting for Cahn-Hilliard inpainting

$$
u_{t}=\Delta\left(-\epsilon \Delta u+\frac{1}{\epsilon} F^{\prime}(u)\right)+\frac{1}{\lambda} \chi_{\Omega \backslash D}(g-u),
$$

where g is a given binary image.
Then the evolution of u can be written as the sum of two gradients, i.e.,

$$
u_{t}=-\nabla_{H^{-1}} \mathcal{J}^{1}(u)+\nabla_{L^{2}} \mathcal{J}^{2}(u)
$$

where

$$
\mathcal{J}^{1}(u)=\int_{\Omega} \frac{\epsilon}{2}|\nabla u|^{2}+\frac{1}{\epsilon} F(u) d x
$$

and

$$
\mathcal{J}^{2}(u)=\frac{1}{2 \lambda} \int_{\Omega} \chi_{\Omega \backslash D}(g-u)^{2} d x .
$$

Convexity splitting for Cahn-Hilliard inpainting (cont.)

$$
\mathcal{J}^{1}(u)=\int_{\Omega} \frac{\epsilon}{2}|\nabla u|^{2}+\frac{1}{\epsilon} F(u) d x
$$

$\mathcal{J}^{1}=\mathcal{J}_{c}^{1}-\mathcal{J}_{e}^{1}$ with

$$
\mathcal{J}_{c}^{1}(u)=\int_{\Omega} \frac{\epsilon}{2}|\nabla u|^{2}+\frac{C_{1}}{2}|u|^{2} d x
$$

and

$$
\mathcal{J}_{e}^{1}(u)=\int_{\Omega}-\frac{1}{\epsilon} F(u)+\frac{C_{1}}{2}|u|^{2} d x .
$$

Convexity splitting for Cahn-Hilliard inpainting (cont.)

$$
\mathcal{J}^{2}(u)=\frac{1}{2 \lambda} \int_{\Omega} \chi_{\Omega \backslash D}(g-u)^{2} d x .
$$

$\mathcal{J}^{2}=\mathcal{J}_{c}^{2}-\mathcal{J}_{e}^{2}$ with

$$
\mathcal{J}_{c}^{2}(u)=\int_{\Omega} \frac{C_{2}}{2}|u|^{2} d x
$$

and

$$
\mathcal{J}_{e}^{2}=\frac{1}{2 \lambda} \int_{\Omega}-\chi_{\Omega \backslash D}(g-u)^{2} d x+\int_{\Omega} \frac{C_{2}}{2}|u|^{2} d x .
$$

Convexity splitting for Cahn-Hilliard inpainting (cont.)

The resulting time-stepping scheme is

$$
\frac{u_{k+1}-u_{k}}{\tau}=-\nabla_{H^{-1}}\left(\mathcal{J}_{c}^{1}\left(u^{k+1}\right)-\mathcal{J}_{e}^{1}\left(u^{k}\right)\right)-\nabla_{L^{2}}\left(\mathcal{J}_{c}^{2}\left(u^{k+1}\right)-\mathcal{J}_{e}^{2}\left(u^{k}\right)\right)
$$

where $\nabla_{H^{-1}}$ and $\nabla_{L^{2}}$ represent the Fréchet derivative with respect to the H^{-1} inner product and the L^{2} inner product respectively. This translates to a numerical scheme of the form

$$
\begin{aligned}
& \frac{u_{k+1}-u_{k}}{\tau}+\epsilon \Delta \Delta u_{k+1}-C_{1} \Delta u_{k+1}+C_{2} u_{k+1} \\
= & \frac{1}{\epsilon} \Delta F^{\prime}\left(u_{k}\right)-C_{1} \Delta u_{k}+\frac{1}{\lambda} \chi_{\Omega \backslash D}\left(g-u_{k}\right)+C_{2} u_{k} .
\end{aligned}
$$

To make sure that $\mathcal{J}_{c}^{i}, \mathcal{J}_{e}^{i}, i=1,2$, are convex the constants $C_{1}>\frac{1}{\epsilon}$, $C_{2}>1 / \lambda$.

Convexity splitting for TV- H^{-1} inpainting

A similar technique can be applied to TV- H^{-1} inpainting:

$$
\begin{aligned}
\frac{u^{k+1}-u^{k}}{\tau}+C_{1} \Delta^{2} u^{k+1}+C_{2} u^{k+1}= & C_{1} \Delta^{2} u^{k}-\Delta\left(\nabla \cdot\left(\frac{\nabla u^{k}}{\nabla u^{k}}\right)\right) \\
& +C_{2} u^{k}+\frac{1}{\lambda} \chi_{\Omega \backslash D}\left(g-u^{k}\right),
\end{aligned}
$$

with constants $C_{1}>\frac{1}{\epsilon}$ (where here ϵ comes from the regularization of the total variation), $C_{2}>1 / \lambda$.

Rigorous results for the schemes

Cahn-Hilliard
- Consistency

TV-H ${ }^{-1}$
- Consistency

Rigorous results for the schemes

Cahn-Hilliard

- Consistency
- Boundedness, i.e., unconditional stability

TV-H ${ }^{-1}$

- Consistency
- Boundedness, i.e., unconditional stability

Rigorous results for the schemes

Cahn-Hilliard

- Consistency
- Boundedness, i.e., unconditional stability
- Convergence

TV-H ${ }^{-1}$

- Consistency
- Boundedness, i.e., unconditional stability
- Convergence . . . only under additional assumptions on the exact solution!

Rigorous results for the schemes

Cahn-Hilliard

- Consistency
- Boundedness, i.e., unconditional stability
- Convergence

TV-H ${ }^{-1}$

- Consistency
- Boundedness, i.e., unconditional stability
- Convergence ... only under additional assumptions on the exact solution!

Reference:

- C.-B. Schönlieb, A. Bertozzi, Unconditionally stable schemes for higher order inpainting, UCLA-CAM report num. 09-78.

Unconditionally stable . . . but not fast!

Lets consider again the numerical scheme for TV- H^{-1} inpainting:

$$
\begin{aligned}
\frac{u^{k+1}-u^{k}}{\tau}+C_{1} \Delta^{2} u^{k+1}+C_{2} u^{k+1}= & C_{1} \Delta^{2} u^{k}-\Delta\left(\nabla \cdot\left(\frac{\nabla u^{k}}{\left|\nabla u^{k}\right|}\right)\right) \\
& +C_{2} u^{k}+\frac{1}{\lambda} \chi_{\Omega \backslash D}\left(g-u^{k}\right)
\end{aligned}
$$

Unconditionally stable . . . but not fast!

Lets consider again the numerical scheme for TV- H^{-1} inpainting:

$$
\begin{aligned}
\frac{u^{k+1}-u^{k}}{\tau}+C_{1} \Delta^{2} u^{k+1}+C_{2} u^{k+1}= & C_{1} \Delta^{2} u^{k}-\Delta\left(\nabla \cdot\left(\frac{\nabla u^{k}}{\left|\nabla u^{k}\right|}\right)\right) \\
& +C_{2} u^{k}+\frac{1}{\lambda} \chi_{\Omega \backslash D}\left(g-u^{k}\right)
\end{aligned}
$$

The constant C_{2} has to be chosen such that $C_{2}>1 / \lambda \ldots$

Unconditionally stable . . . but not fast!

Lets consider again the numerical scheme for TV- H^{-1} inpainting:

$$
\begin{aligned}
\frac{u^{k+1}-u^{k}}{\tau}+C_{1} \Delta^{2} u^{k+1}+C_{2} u^{k+1}= & C_{1} \Delta^{2} u^{k}-\Delta\left(\nabla \cdot\left(\frac{\nabla u^{k}}{\left|\nabla u^{k}\right|}\right)\right) \\
& +C_{2} u^{k}+\frac{1}{\lambda} \chi_{\Omega \backslash D}\left(g-u^{k}\right),
\end{aligned}
$$

The constant C_{2} has to be chosen such that $C_{2}>1 / \lambda \ldots$
...since usually in inpainting tasks λ is chosen comparatively small, e.g., $\lambda=10^{-3}$, the condition on C_{2} damps the convergence of this method \Rightarrow converging slow!

Outline

(1) Unconditionally Stable Schemes

(2) A Dual Approach for TV-H ${ }^{-1}$ Minimization

(3) Domain Decomposition for TV- H^{-1} Inpainting

TV- H^{-1} Minimization

For a given function $g \in L^{2}(\Omega)$ we are interested in the numerical realization of the following minimization problem

$$
\min _{u \in B V(\Omega)} \mathcal{J}(u)=|D u|(\Omega)+\frac{1}{2 \lambda}\|T u-g\|_{-1}^{2},
$$

where $T \in \mathcal{L}\left(L^{2}(\Omega)\right)$ is a bounded linear operator and $\lambda>0$ is a tuning parameter. The function $|D u|(\Omega)$ is the total variation of u and $\|.\|_{-\mathbf{1}}$ is the norm in $H^{-1}(\Omega)$, the dual of $H_{0}^{1}(\Omega)$.

TV- H^{-1} Minimization

For a given function $g \in L^{2}(\Omega)$ we are interested in the numerical realization of the following minimization problem

$$
\min _{u \in B V(\Omega)} \mathcal{J}(u)=|D u|(\Omega)+\frac{1}{2 \lambda}\|T u-g\|_{-1}^{2},
$$

where $T \in \mathcal{L}\left(L^{2}(\Omega)\right)$ is a bounded linear operator and $\lambda>0$ is a tuning parameter. The function $|D u|(\Omega)$ is the total variation of u and $\|.\|_{-\mathbf{1}}$ is the norm in $H^{-1}(\Omega)$, the dual of $H_{0}^{1}(\Omega)$.
This results in a fourth order optimality condition, e.g., if $T=I d$:

$$
\Delta p+\frac{1}{\lambda}(g-u)=0, \quad p \in \partial|D u|(\Omega),
$$

Numerical Solution of TV- H^{-1} Minimization

We want to numerically solve the minimization problem

$$
\min _{u \in B V(\Omega)} \mathcal{J}(u)=|D u|(\Omega)+\frac{1}{2 \lambda}\|T u-g\|_{-1}^{2}
$$

Numerical Solution of TV- H^{-1} Minimization

We want to numerically solve the minimization problem

$$
\min _{u \in B V(\Omega)} \mathcal{J}(u)=|D u|(\Omega)+\frac{1}{2 \lambda}\|T u-g\|_{-1}^{2} .
$$

Usually: the numerical solution of TV- H^{-1} minimization depends on the specific problem at hand.

The Approach of Lieu \& Vese for Denoising/Decomposition

TV- H^{-1} denoising/decomposition is solved by using the Fourier representation of the H^{-1} norm on the whole $\mathbb{R}^{d}, d \geq 1$. Thereby the space $H^{-1}\left(\mathbb{R}^{d}\right)$ is defined as a Hilbert space equipped with the inner product

$$
\langle f, g\rangle_{-1}=\int\left(1+|\xi|^{2}\right)^{-1} \hat{f} \overline{\hat{g}} d \xi
$$

and associated norm $\|f\|_{-1}=\sqrt{\langle f, f\rangle_{-1}}$.

The Approach of Lieu \& Vese for Denoising/Decomposition

TV- H^{-1} denoising/decomposition is solved by using the Fourier representation of the H^{-1} norm on the whole $\mathbb{R}^{d}, d \geq 1$. Thereby the space $H^{-1}\left(\mathbb{R}^{d}\right)$ is defined as a Hilbert space equipped with the inner product

$$
\langle f, g\rangle_{-1}=\int\left(1+|\xi|^{2}\right)^{-1} \hat{f} \overline{\hat{g}} d \xi
$$

and associated norm $\|f\|_{-1}=\sqrt{\langle f, f\rangle_{-1}}$.
\Rightarrow
only have to solve a 2nd order PDE

$$
\begin{array}{ll}
\lambda \nabla \cdot\left(\frac{\nabla u}{|\nabla u|}\right)+\left[2 \operatorname{Re}\left\{\frac{\overline{\overline{\hat{g}}-\overline{\hat{u}}}}{\left(1+|\xi|^{2}\right)^{-1}}\right\}\right]=0 & \text { in } \Omega \\
\frac{\nabla u}{|\nabla u|} \cdot \vec{n}=0 & \text { on } \partial \Omega \\
u=0 & \text { outside } \bar{\Omega}
\end{array}
$$

Convexity splitting for TV- H^{-1} inpainting ${ }^{1}$

Convexity splitting: iterative scheme for $\mathrm{TV}-\mathrm{H}^{-1}$ inpainting that is unconditionally stable:

Convexity splitting for TV- H^{-1} inpainting ${ }^{1}$

Convexity splitting: iterative scheme for $\mathrm{TV}-\mathrm{H}^{-1}$ inpainting that is unconditionally stable:
Apply convexity splitting to the two energies

$$
\mathcal{J}^{1}(u)=\int_{\Omega}|\nabla u| d x, \quad \mathcal{J}^{2}(u)=\frac{1}{2 \lambda} \int_{\Omega} \chi_{\Omega \backslash D}(u-g)^{2}
$$

[^0]
Convexity splitting for TV- H^{-1} inpainting ${ }^{1}$

Convexity splitting: iterative scheme for $\mathrm{TV}-\mathrm{H}^{-1}$ inpainting that is unconditionally stable:
Apply convexity splitting to the two energies

$$
\mathcal{J}^{1}(u)=\int_{\Omega}|\nabla u| d x, \quad \mathcal{J}^{2}(u)=\frac{1}{2 \lambda} \int_{\Omega} \chi_{\Omega \backslash D}(u-g)^{2}
$$

$$
\begin{aligned}
\frac{u^{k+1}-u^{k}}{\tau}+C_{1} \Delta^{2} u^{k+1}+C_{2} u^{k+1}= & C_{1} \Delta^{2} u^{k}-\Delta\left(\nabla \cdot\left(\frac{\nabla u^{k}}{\nabla \nabla u^{k}}\right)\right) \\
& +C_{2} u^{k}+\frac{1}{\lambda} \chi_{\Omega \backslash D}\left(g-u^{k}\right),
\end{aligned}
$$

with constants $C_{1}>\frac{1}{\epsilon}$ (where here ϵ comes from the regularization of the total variation), $C_{2}>1 / \lambda$.

[^1]
A dual method

- Since usually in inpainting tasks λ is chosen comparatively small, e.g., $\lambda=10^{-3}$, the condition on C_{2} damps the convergence of this method \Rightarrow although unconditionally stable, converging slow! ...
- ...this will be similar for the new approach, but with the new approach we will be able to apply domain decomposition to solve the minimization problem \Rightarrow Parallelize the numerical computation \Rightarrow Shorten the computational time.
- The new approach will give us a "unified" algorithm to solve TV- H^{-1} minimization.

A dual method (cont.)

Chambolle (04): A dual method to numerically compute a minimizer of

$$
\mathcal{J}(u)=\frac{1}{2 \lambda}\|u-g\|_{L^{2}(\Omega)}^{2}+|D u|(\Omega) .
$$

A dual method (cont.)

Chambolle (04): A dual method to numerically compute a minimizer of

$$
\mathcal{J}(u)=\frac{1}{2 \lambda}\|u-g\|_{L^{2}(\Omega)}^{2}+|D u|(\Omega)
$$

It amounts to compute the minimizer u of \mathcal{J} as

$$
u=g-\mathbb{P}_{\lambda K}(g)
$$

where $\mathbb{P}_{\lambda K}$ denotes the orthogonal projection over $L^{2}(\Omega)$ on the convex set K which is the closure of the set

$$
\left\{\nabla \cdot \xi: \xi \in C_{c}^{1}\left(\Omega ; \mathbb{R}^{2}\right),|\xi(x)| \leq 1 \forall x \in \mathbb{R}^{2}\right\}
$$

A dual method (cont.)

Chambolle (04): A dual method to numerically compute a minimizer of

$$
\mathcal{J}(u)=\frac{1}{2 \lambda}\|u-g\|_{L^{2}(\Omega)}^{2}+|D u|(\Omega) .
$$

It amounts to compute the minimizer u of \mathcal{J} as

$$
u=g-\mathbb{P}_{\lambda K}(g)
$$

where $\mathbb{P}_{\lambda K}$ denotes the orthogonal projection over $L^{2}(\Omega)$ on the convex set K which is the closure of the set

$$
\left\{\nabla \cdot \xi: \xi \in C_{c}^{1}\left(\Omega ; \mathbb{R}^{2}\right),|\xi(x)| \leq 1 \forall x \in \mathbb{R}^{2}\right\}
$$

To numerically compute the projection $\mathbb{P}_{\lambda K}(g)$ he uses a fixed point algorithm.

A dual method (cont.)

... now we want to do something similar for TV- H^{-1} minimization, i.e., we want to numerically solve

$$
\min _{u \in B V(\Omega)} \mathcal{J}(u)=|D u|(\Omega)+\frac{1}{2 \lambda}\|T u-g\|_{-1}^{2} .
$$

A dual method (cont.)

...now we want to do something similar for TV- H^{-1} minimization, i.e., we want to numerically solve

$$
\min _{u \in B V(\Omega)} \mathcal{J}(u)=|D u|(\Omega)+\frac{1}{2 \lambda}\|T u-g\|_{-1}^{2}
$$

- First Step: Solve the simplified problem when $T=I d$
- Second Step: Use the solution for $T=I d$ in order to solve the general case with the method of surrogate functionals.

A dual method (cont.)

First Step:

$$
\min _{u}\left\{\mathcal{J}(u)=|D u|(\Omega)+\frac{1}{2 \lambda}\|u-g\|_{-1}^{2}\right\}
$$

A dual method (cont.)

First Step:

$$
\min _{u}\left\{\mathcal{J}(u)=|D u|(\Omega)+\frac{1}{2 \lambda}\|u-g\|_{-1}^{2}\right\}
$$

... corresponding optimality condition

$$
0 \in \partial|D u|(\Omega)+\Delta^{-1}(u-g) \frac{1}{\lambda}
$$

A dual method (cont.)

First Step:

$$
\min _{u}\left\{\mathcal{J}(u)=|D u|(\Omega)+\frac{1}{2 \lambda}\|u-g\|_{-1}^{2}\right\}
$$

... corresponding optimality condition

$$
0 \in \partial|D u|(\Omega)+\Delta^{-1}(u-g) \frac{1}{\lambda}
$$

With

$$
s \in \partial f(x) \Longleftrightarrow x \in \partial f^{*}(s)
$$

this can be rewritten as

$$
u \in \partial|D \cdot|(\Omega)^{*}\left(\frac{\Delta^{-1}(g-u)}{\lambda}\right)
$$

where

$$
|D \cdot|(\Omega)^{*}(v)=\chi_{K}(v)= \begin{cases}0 & \text { if } v \in K \\ +\infty & \text { otherwise }\end{cases}
$$

and K is the closure of the set

$$
\left\{\nabla \cdot \xi: \xi \in C_{c}^{1}\left(\Omega ; \mathbb{R}^{2}\right),|\xi(x)| \leq 1 \forall x \in \mathbb{R}^{2}\right\}
$$

A dual method (cont.)

First Step:

With $w=\Delta^{-1}(g-u) / \lambda$ it reads

$$
\begin{array}{ll}
0 \in(-\Delta w-g / \lambda)+\frac{1}{\lambda} \partial|D \cdot|(\Omega)^{*}(w) & \text { in } \Omega \\
w=0 & \text { on } \partial \Omega
\end{array}
$$

A dual method (cont.)

First Step:

With $w=\Delta^{-1}(g-u) / \lambda$ it reads

$$
\begin{array}{ll}
0 \in(-\Delta w-g / \lambda)+\frac{1}{\lambda} \partial|D \cdot|(\Omega)^{*}(w) & \text { in } \Omega \\
w=0 & \text { on } \partial \Omega
\end{array}
$$

In other words w is a minimizer of

$$
\frac{\left\|w-\Delta^{-1} g / \lambda\right\|_{H_{0}^{1}(\Omega)}^{2}}{2}+\frac{1}{\lambda}|D \cdot|(\Omega)^{*}(w),
$$

where $H_{0}^{1}(\Omega)=\left\{v \in H^{1}(\Omega): v=0\right.$ on $\left.\partial \Omega\right\}$ and $\|v\|_{H_{0}^{1}(\Omega)}=\|\nabla v\|$.

A dual method (cont.)

First Step:

With $w=\Delta^{-1}(g-u) / \lambda$ it reads

$$
\begin{array}{ll}
0 \in(-\Delta w-g / \lambda)+\frac{1}{\lambda} \partial|D \cdot|(\Omega)^{*}(w) & \text { in } \Omega \\
w=0 & \text { on } \partial \Omega
\end{array}
$$

In other words w is a minimizer of

$$
\frac{\left\|w-\Delta^{-1} g / \lambda\right\|_{H_{0}^{1}(\Omega)}^{2}}{2}+\frac{1}{\lambda}|D \cdot|(\Omega)^{*}(w),
$$

where $H_{0}^{1}(\Omega)=\left\{v \in H^{1}(\Omega): v=0\right.$ on $\left.\partial \Omega\right\}$ and $\|v\|_{H_{0}^{1}(\Omega)}=\|\nabla v\|$.
A minimizer w fulfills

$$
w=\mathbb{P}_{K}^{1}\left(\Delta^{-1} g / \lambda\right),
$$

where \mathbb{P}_{K}^{1} is the orthogonal projection on K over $H_{0}^{1}(\Omega)$, i.e.,

$$
\mathbb{P}_{K}^{1}(u)=\operatorname{argmin}_{v \in K}\|u-v\|_{H_{0}^{1}(\Omega)} .
$$

A dual method (cont.)

First Step:

With $w=\Delta^{-1}(g-u) / \lambda$ it reads

$$
\begin{array}{ll}
0 \in(-\Delta w-g / \lambda)+\frac{1}{\lambda} \partial|D \cdot|(\Omega)^{*}(w) & \text { in } \Omega \\
w=0 & \text { on } \partial \Omega
\end{array}
$$

In other words w is a minimizer of

$$
\frac{\left\|w-\Delta^{-1} g / \lambda\right\|_{H_{0}^{1}(\Omega)}^{2}}{2}+\frac{1}{\lambda}|D \cdot|(\Omega)^{*}(w),
$$

where $H_{0}^{1}(\Omega)=\left\{v \in H^{1}(\Omega): v=0\right.$ on $\left.\partial \Omega\right\}$ and $\|v\|_{H_{0}^{1}(\Omega)}=\|\nabla v\|$.
A minimizer w fulfills

$$
w=\mathbb{P}_{K}^{1}\left(\Delta^{-1} g / \lambda\right),
$$

where \mathbb{P}_{K}^{1} is the orthogonal projection on K over $H_{0}^{1}(\Omega)$, i.e.,

$$
\mathbb{P}_{K}^{1}(u)=\operatorname{argmin}_{v \in K}\|u-v\|_{H_{0}^{1}(\Omega)} .
$$

Hence the solution u of the problem is given by

$$
u=g+\Delta\left(\mathbb{P}_{\lambda K}^{1}\left(\Delta^{-1} g\right)\right)
$$

A dual method (cont.)

First Step:

Computing the nonlinear projection $\mathbb{P}_{\lambda K}^{1}\left(\Delta^{-1} g\right)$ amounts to solving the following problem:

$$
\min \left\{\left\|\left(\nabla\left(\lambda \nabla \cdot p-\Delta^{-1} g\right)\right)_{i, j}\right\|^{2}: p \in Y,\left|p_{i, j}\right| \leq 1 \forall i=1, \ldots, N ; j=1, \ldots, M\right\} .
$$

Using the Karush-Kuhn-Tucker conditions for the above constrained minimization one can propose the following gradient descent algorithm: for an initial $p^{0}=0$, iterate for $n \geq 0$

$$
p_{i, j}^{n+1}=\frac{p_{i, j}^{n}-\tau\left(\nabla \Delta\left(\nabla \cdot p^{n}-\Delta^{-1} g / \lambda\right)\right)_{i, j}}{1+\tau\left|\left(\nabla \Delta\left(\nabla \cdot p^{n}-\Delta^{-1} g / \lambda\right)\right)_{i, j}\right|} .
$$

Redoing the convergence proof from the paper of Chambolle we end up with a similar result:

Theorem
Let $\tau \leq 1 / 64$. Then, $\lambda \nabla \cdot p^{n}$ converges to $\mathbb{P}_{\lambda K}^{1}\left(\Delta^{-1} g\right)$ as $n \rightarrow \infty$.

A dual method (cont.)

Second Step:

The second step is to use the presented algorithm in order to solve

$$
\min _{u}\left\{\mathcal{J}(u)=|D u|(\Omega)+\frac{1}{2 \lambda}\|T u-g\|_{-1}^{2}\right\} .
$$

A dual method (cont.)

Second Step:

The second step is to use the presented algorithm in order to solve

$$
\min _{u}\left\{\mathcal{J}(u)=|D u|(\Omega)+\frac{1}{2 \lambda}\|T u-g\|_{-1}^{2}\right\} .
$$

Approximate a minimizer iteratively by a sequence of minimizers of, what we call, surrogate functionals \mathcal{J}^{s}. Let $\tau>0$ be a fixed stepsize. Starting with an initial condition $u^{0}=g$, we solve for $k \geq 0$
$u^{k+1}=\operatorname{argmin}_{u} \mathcal{J}^{s}\left(u, u^{k}\right)=|D u|(\Omega)+\frac{1}{2 \tau}\left\|u-u^{k}\right\|_{-1}^{2}+\frac{1}{2 \lambda}\left\|u-\left(g+(I d-T) u^{k}\right)\right\|_{-1}^{2}$.

A dual method (cont.)

Second Step:

The second step is to use the presented algorithm in order to solve

$$
\min _{u}\left\{\mathcal{J}(u)=|D u|(\Omega)+\frac{1}{2 \lambda}\|T u-g\|_{-1}^{2}\right\} .
$$

Approximate a minimizer iteratively by a sequence of minimizers of, what we call, surrogate functionals \mathcal{J}^{s}. Let $\tau>0$ be a fixed stepsize. Starting with an initial condition $u^{0}=g$, we solve for $k \geq 0$
$u^{k+1}=\operatorname{argmin}_{u} \mathcal{J}^{s}\left(u, u^{k}\right)=|D u|(\Omega)+\frac{1}{2 \tau}\left\|u-u^{k}\right\|_{-1}^{2}+\frac{1}{2 \lambda}\left\|u-\left(g+(I d-T) u^{k}\right)\right\|_{-1}^{2}$.
Note that:

- A rigorous derivation of convergence properties is still missing!
- For image inpainting the surrogate functionals have a fourth order optimality conditions!

A dual method (cont.)

Second Step:

Now, the corresponding optimality condition reads

$$
0 \in \partial|D u|(\Omega)+\frac{1}{\tau} \Delta^{-1}\left(u-u^{k}\right)+\frac{1}{\lambda} \Delta^{-1}\left(u-\left(g+(I d-T) u^{k}\right)\right)
$$

A dual method (cont.)

Second Step:

Now, the corresponding optimality condition reads

$$
0 \in \partial|D u|(\Omega)+\frac{1}{\tau} \Delta^{-1}\left(u-u^{k}\right)+\frac{1}{\lambda} \Delta^{-1}\left(u-\left(g+(I d-T) u^{k}\right)\right) .
$$

This can be rewritten as

$$
\Delta^{-1}\left(\frac{g_{1}-u}{\tau}+\frac{g_{2}-u}{\lambda}\right) \in \partial|D u|(\Omega),
$$

where $g_{1}=u^{k}, g_{2}=g+(I d-T) u^{k}$.

A dual method (cont.)

Second Step:

Now, the corresponding optimality condition reads

$$
0 \in \partial|D u|(\Omega)+\frac{1}{\tau} \Delta^{-1}\left(u-u^{k}\right)+\frac{1}{\lambda} \Delta^{-1}\left(u-\left(g+(I d-T) u^{k}\right)\right) .
$$

This can be rewritten as

$$
\Delta^{-1}\left(\frac{g_{1}-u}{\tau}+\frac{g_{2}-u}{\lambda}\right) \in \partial|D u|(\Omega),
$$

where $g_{1}=u^{k}, g_{2}=g+(I d-T) u^{k}$.
Setting

$$
\begin{aligned}
& g=\frac{g_{1} \lambda+g_{2} \tau}{\lambda+\tau} \\
& \mu=\frac{\lambda \tau}{\lambda+\tau},
\end{aligned}
$$

we end up with the same inclusion as before, i.e.,

$$
\frac{\Delta^{-1}(g-u)}{\mu} \in \partial|D u|(\Omega) .
$$

A dual method (cont.)

A "unified" algorithm to solve TV- H^{-1} Minimization:

- In the case $T=I d$ directly compute a minimizer with

$$
u=g+\Delta\left(\mathbb{P}_{\lambda K}^{1}\left(\Delta^{-1} g\right)\right) .
$$

- In the case $T \neq I d$ iteratively minimize the surrogate functionals by solving

$$
u^{k}=g+\Delta\left(\mathbb{P}_{\lambda K}^{1}\left(\Delta^{-1} g\right)\right)
$$

in every iteration step until the two subsequent iterates u^{k} and u^{k+1} are sufficiently close.

Denoising examples

(a) $g=u+v$

Figure: Noisy image with $S N R=25.4$

Denoising examples

(b) TV-L $L^{2}: \mathrm{u}$

(d) TV-H-1:u

(c) TV-L $L^{2}: \mathrm{V}$

(e) TV- $H^{-1}: \mathrm{V}$

Denoising examples

(a) $g=u+v$

Figure: Noisy image with $S N R=29.4$

Denoising examples

Inpainting examples

[^2]
4th order versus 2nd order method

[^3]
Outline

(1) Unconditionally Stable Schemes

(2) A Dual Approach for TV- H^{-1} Minimization

(3) Domain Decomposition for TV- H^{-1} Inpainting

Domain Decomposition for TV- H^{-1} inpainting

Why domain decomposition?

Domain Decomposition for TV- H^{-1} inpainting

Why domain decomposition?

Speed up the numerical computation of minimizers! Parallel Computations are possible!

Domain Decomposition for $\mathrm{TV}-\mathrm{H}^{-1}$ inpainting (cont.)

Domain Decomposition:

- Split the domain Ω into two arbitrary nonoverlapping domains $\Omega=\Omega_{1} \cup \Omega_{2}$ with $\Omega_{1} \cap \Omega_{2}=\emptyset$.
- Let $\mathcal{H}=L^{2}(\Omega)$ and $V_{i}=L^{2}\left(\Omega_{i}\right)$, where $\mathcal{H}=V_{1} \oplus V_{2}$.

Domain Decomposition for $\mathrm{TV}-\mathrm{H}^{-1}$ inpainting (cont.)

Domain Decomposition:

- Split the domain Ω into two arbitrary nonoverlapping domains $\Omega=\Omega_{1} \cup \Omega_{2}$ with $\Omega_{1} \cap \Omega_{2}=\emptyset$.
- Let $\mathcal{H}=L^{2}(\Omega)$ and $V_{i}=L^{2}\left(\Omega_{i}\right)$, where $\mathcal{H}=V_{1} \oplus V_{2}$.

Pick an initial $V_{1} \oplus V_{2} \ni u_{1}^{0}+u_{2}^{0}:=u^{0} \in B V(\Omega)$, for example $u^{0}=0$, and iterate

$$
\left\{\begin{array}{l}
u_{1}^{n+1} \approx \operatorname{argmin}_{u_{1} \in V_{1}} \mathcal{J}\left(u_{1}+u_{2}^{n}\right) \\
u_{2}^{n+1} \approx \operatorname{argmin}_{u_{2} \in V_{2}} \mathcal{J}\left(u_{1}^{n+1}+u_{2}\right) \\
u^{n+1}:=u_{1}^{n+1}+u_{2}^{n+1}
\end{array}\right.
$$

Domain Decomposition for $\mathrm{TV}-\mathrm{H}^{-1}$ inpainting (cont.)

Domain Decomposition:

- Split the domain Ω into two arbitrary nonoverlapping domains $\Omega=\Omega_{1} \cup \Omega_{2}$ with $\Omega_{1} \cap \Omega_{2}=\emptyset$.
- Let $\mathcal{H}=L^{2}(\Omega)$ and $V_{i}=L^{2}\left(\Omega_{i}\right)$, where $\mathcal{H}=V_{1} \oplus V_{2}$.

Pick an initial $V_{1} \oplus V_{2} \ni u_{1}^{0}+u_{2}^{0}:=u^{0} \in B V(\Omega)$, for example $u^{0}=0$, and iterate

$$
\left\{\begin{array}{l}
u_{1}^{n+1} \approx \operatorname{argmin}_{u_{1} \in V_{1}} \mathcal{J}\left(u_{1}+u_{2}^{n}\right) \\
u_{2}^{n+1} \approx \operatorname{argmin}_{u_{2} \in V_{2}} \mathcal{J}\left(u_{1}^{n+1}+u_{2}\right) \\
u^{n+1}:=u_{1}^{n+1}+u_{2}^{n+1}
\end{array}\right.
$$

This is implemented by solving the subspace minimization problems via an oblique thresholding iteration (Fornasier, Schönlieb 08).

Domain Decomposition for $\mathrm{TV}-\mathrm{H}^{-1}$ inpainting (cont.)

A minimizer u_{1}^{k+1} of the subproblem on Ω_{1} can be iteratively computed (again by means of surrogate functionals) as

$$
u_{1}^{k+1}=-\Delta\left(I d-\mathbb{P}_{\mu K}^{1}\right)\left(\Delta^{-1}\left(z+u_{2}\right)-\mu \eta\right)-u_{2}
$$

Domain Decomposition for $\mathrm{TV}-\mathrm{H}^{-1}$ inpainting (cont.)

A minimizer u_{1}^{k+1} of the subproblem on Ω_{1} can be iteratively computed (again by means of surrogate functionals) as

$$
u_{1}^{k+1}=-\Delta\left(I d-\mathbb{P}_{\mu K}^{1}\right)\left(\Delta^{-1}\left(z+u_{2}\right)-\mu \eta\right)-u_{2}
$$

where η fulfills

$$
\eta=\frac{1}{\mu} \Pi_{V_{2}}\left[\mathbb{P}_{\mu K}^{1}\left(\mu \eta-\Delta^{-1}\left(u_{2}+z\right)\right)\right]
$$

which can be computed via the iteration

$$
\eta^{0} \in V_{2}, \quad \eta^{m+1}=\frac{1}{\mu} \Pi_{V_{2}}\left[\mathbb{P}_{\mu K}^{1}\left(\mu \eta^{m}-\Delta^{-1}\left(u_{2}+z\right)\right)\right], \quad m \geq 0
$$

Domain Decomposition for $\mathrm{TV}-\mathrm{H}^{-1}$ inpainting (cont.)

In sum we solve TV- H^{-1} inpainting by the alternating subspace minimizations: Pick an initial $V_{1} \oplus V_{2} \ni u_{1}^{0, L}+u_{2}^{0, M}:=u^{0} \in \mathcal{B} V(\Omega)$, for example $u^{0}=0$, and iterate

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
u_{1}^{n+1,0}=u_{1}^{n, L} \\
u_{1}^{n+1, \ell+1}=\operatorname{argmin}_{u_{1} \in V_{1}} \mathcal{J}_{1}^{S}\left(u_{1}+u_{2}^{n, M}, u_{1}^{n+1, \ell}\right) \quad \ell=0, \ldots, L-1 \\
u_{2}^{n+1,0}=u_{2}^{n, M} \\
u_{2}^{n+1, m+1}=\operatorname{argmin}_{u_{2} \in V_{2}} \mathcal{J}_{2}^{s}\left(u_{1}^{n+1, L}+u_{2}, u_{2}^{n+1, m}\right) \quad m=0, \ldots, M-1 \\
u^{n+1}:=u_{1}^{n+1, L}+u_{2}^{n+1, M},
\end{array}\right.
\end{array}\right.
$$

Domain Decomposition for $\mathrm{TV}-\mathrm{H}^{-1}$ inpainting (cont.)

In sum we solve TV- H^{-1} inpainting by the alternating subspace minimizations: Pick an initial $V_{1} \oplus V_{2} \ni u_{1}^{0, L}+u_{2}^{0, M}:=u^{0} \in \mathcal{B} V(\Omega)$, for example $u^{0}=0$, and iterate

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
u_{1}^{n+1,0}=u_{1}^{n, L} \\
u_{1}^{n+1, \ell+1}=\operatorname{argmin}_{u_{1} \in V_{1}} \mathcal{J}_{1}^{S}\left(u_{1}+u_{2}^{n, M}, u_{1}^{n+1, \ell}\right) \quad \ell=0, \ldots, L-1 \\
u_{2}^{n+1,0}=u_{2}^{n, M} \\
u_{2}^{n+1, m+1}=\operatorname{argmin}_{u_{2} \in V_{2}} \mathcal{J}_{2}^{S}\left(u_{1}^{n+1, L}+u_{2}, u_{2}^{n+1, m}\right) \quad m=0, \ldots, M-1 \\
u^{n+1}:=u_{1}^{n+1, L}+u_{2}^{n+1, M},
\end{array}\right.
\end{array}\right.
$$

where each subminimization problem is computed by the oblique thresholding algorithm.

Domain decomposition results

Domain decomposition results

References

- C.-B. Schönlieb, Total variation minimization with an H^{-1} constraint, CRM Series 9, Singularities in Nonlinear Evolution Phenomena and Applications Proceedings, Scuola Normale Superiore Pisa 2009, pp. 201-232.
- M. Fornasier, C.-B. Schönlieb, Subspace correction methods for total variation and ℓ_{1} - minimization, SIAM J. Numer. Anal., Vol.47, No.5, pp. 3397-3428 (2009).
- C.-B. Schönlieb, A. Bertozzi, Unconditionally stable schemes for higher order inpainting, UCLA-CAM report num. 09-78, 32 p.

- The Matlab Code for the domain decomposition method is available at: http://homepage.univie.ac.at/ carola.schoenlieb/webpage_ tvdode/tv_dode_numerics.htm

For more details see http://homepage.univie.ac.at/carola.schoenlieb
or write to: c.b.schonlieb@damtp.cam.ac.uk

[^0]: ${ }^{1}$ joint work with Andrea Bertozzi

[^1]: ${ }^{1}$ joint work with Andrea Bertozzi

[^2]: ${ }^{2} \mathrm{u}(1000)$ with $\lambda=10^{-3}$.

[^3]: ${ }^{3}$ TV- $H^{-1} \mathrm{u}(1000)$ with $\lambda=10^{-3}$.
 ${ }^{4}$ TV- $L^{2} \mathrm{u}(5000)$ with $\lambda=10^{-3}$.

