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Unconditionally Stable Schemes

Convexity Splitting

A minimizer u of an energy J (u) is formally computed as a stationary
solution of

ut = −∇J (u)
u(0) = u0.

Under certain assumptions on J this is called a gradient system.

If J (u) is convex then only a single equilibrium for the gradient system
exists.
If J (u) is not convex multiple minimizers may exist and the gradient
flow can expand u(t). An explicit iterative algorithm, i.e.
uk+1 = uk −∆t∇J (uk) in this case may require extremely small time
steps, depending of course on J . For the higher order equations
J (uk) contains second order derivatives resulting in a restriction of ∆t
up to order (∆x)4.
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Unconditionally Stable Schemes

Convexity splitting (cont.)

The idea of convexity splitting is to derive a semi-impicit iterative
scheme that is unconditionally stable.
Eyre (1998): Let

J (u) = Jc(u)− Je(u)

where Jc,Je are strictly convex. Under certain assumptions on the
functionals, the numerical scheme

uk+1 = uk −∆t(∇Jc(uk+1)−∇Je(uk))

is gradient stable for every initial condition u0 ∈ R and all ∆t > 0, and
possesses a unique solution for each iteration step.

Although our inpainting models do not obey a variational principle (the
are not gradient flows!), we can apply the convexity splitting method in
a modified form . . .
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Unconditionally Stable Schemes

Convexity splitting for Cahn-Hilliard inpainting

ut = ∆(−ε∆u +
1
ε
F ′(u)) +

1
λ

χΩ\D(g − u),

where g is a given binary image.

Then the evolution of u can be written as the sum of two gradients, i.e.,

ut = −∇H−1J 1(u) +∇L2J 2(u),

where

J 1(u) =
∫

Ω

ε

2
|∇u|2 +

1
ε
F (u) dx,

and

J 2(u) =
1
2λ

∫
Ω

χΩ\D(g − u)2 dx.
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Unconditionally Stable Schemes

Convexity splitting for Cahn-Hilliard inpainting (cont.)

J 1(u) =
∫

Ω

ε

2
|∇u|2 +

1
ε
F (u) dx,

J 1 = J 1
c − J 1

e with

J 1
c (u) =

∫
Ω

ε

2
|∇u|2 +

C1

2
|u|2 dx,

and

J 1
e (u) =

∫
Ω
−1

ε
F (u) +

C1

2
|u|2 dx.
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Unconditionally Stable Schemes

Convexity splitting for Cahn-Hilliard inpainting (cont.)

J 2(u) =
1
2λ

∫
Ω

χΩ\D(g − u)2 dx.

J 2 = J 2
c − J 2

e with

J 2
c (u) =

∫
Ω

C2

2
|u|2 dx,

and

J 2
e =

1
2λ

∫
Ω
−χΩ\D(g − u)2 dx +

∫
Ω

C2

2
|u|2 dx.
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Unconditionally Stable Schemes

Convexity splitting for Cahn-Hilliard inpainting (cont.)

The resulting time-stepping scheme is

uk+1 − uk

τ
= −∇H−1(J 1

c (uk+1)− J 1
e (uk))−∇L2(J 2

c (uk+1)− J 2
e (uk)),

where ∇H−1 and ∇L2 represent the Fréchet derivative with respect to
the H−1 inner product and the L2 inner product respectively. This
translates to a numerical scheme of the form

uk+1 − uk

τ
+ ε∆∆uk+1 − C1∆uk+1 + C2uk+1

=
1
ε
∆F ′(uk)− C1∆uk +

1
λ

χΩ\D(g − uk) + C2uk.

To make sure that J i
c ,J i

e , i = 1, 2, are convex the constants C1 > 1
ε ,

C2 > 1/λ.
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Unconditionally Stable Schemes

Convexity splitting for TV-H−1 inpainting

A similar technique can be applied to TV-H−1 inpainting:

uk+1−uk

τ + C1∆2uk+1 + C2u
k+1 = C1∆2uk −∆(∇ · ( ∇uk

|∇uk|))
+C2u

k + 1
λχΩ\D(g − uk),

with constants C1 > 1
ε (where here ε comes from the regularization of

the total variation), C2 > 1/λ.
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Unconditionally Stable Schemes

Rigorous results for the schemes

Cahn-Hilliard
Consistency

Boundedness, i.e.,
unconditional
stability
Convergence

TV-H−1

Consistency

Boundedness, i.e., unconditional
stability
Convergence . . . only under
additional assumptions on the exact
solution!

Reference:
C.-B. Schönlieb, A. Bertozzi, Unconditionally stable schemes for
higher order inpainting, UCLA-CAM report num. 09-78.
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Unconditionally Stable Schemes

Unconditionally stable . . . but not fast!

Lets consider again the numerical scheme for TV-H−1 inpainting:

uk+1−uk

τ + C1∆2uk+1 + C2u
k+1 = C1∆2uk −∆(∇ · ( ∇uk

|∇uk|))
+C2u

k + 1
λχΩ\D(g − uk),

The constant C2 has to be chosen such that C2 > 1/λ . . .

. . . since usually in inpainting tasks λ is chosen comparatively small,
e.g., λ = 10−3, the condition on C2 damps the convergence of this
method ⇒ converging slow!
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A Dual Approach for TV-H−1 Minimization

TV-H−1 Minimization

For a given function g ∈ L2(Ω) we are interested in the numerical
realization of the following minimization problem

min
u∈BV (Ω)

J (u) = |Du| (Ω) +
1
2λ

‖Tu− g‖2
−1 ,

where T ∈ L(L2(Ω)) is a bounded linear operator and λ > 0 is a tuning
parameter. The function |Du| (Ω) is the total variation of u and ‖.‖−1 is
the norm in H−1(Ω), the dual of H1

0 (Ω).

This results in a fourth order optimality condition, e.g., if T = Id:

∆p +
1
λ

(g − u) = 0, p ∈ ∂|Du|(Ω),
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A Dual Approach for TV-H−1 Minimization

Numerical Solution of TV-H−1 Minimization

We want to numerically solve the minimization problem

min
u∈BV (Ω)

J (u) = |Du| (Ω) +
1
2λ

‖Tu− g‖2
−1 .

Usually: the numerical solution of TV-H−1 minimization depends on
the specific problem at hand.
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A Dual Approach for TV-H−1 Minimization

The Approach of Lieu & Vese for
Denoising/Decomposition

TV-H−1 denoising/decomposition is solved by using the Fourier
representation of the H−1 norm on the whole Rd, d ≥ 1. Thereby the
space H−1(Rd) is defined as a Hilbert space equipped with the inner
product

〈f, g〉−1 =
∫ (

1 + |ξ|2
)−1

f̂ ¯̂g dξ

and associated norm ‖f‖−1 =
√
〈f, f〉−1.

⇒
only have to solve a 2nd order PDE

λ∇ · ( ∇u
|∇u|) +

[
2 Re

˜{
¯̂g−¯̂u

(1+|ξ|2)−1

}]
= 0 in Ω

∇u
|∇u| · ~n = 0 on ∂Ω
u = 0 outside Ω̄,
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A Dual Approach for TV-H−1 Minimization

Convexity splitting for TV-H−1 inpainting1

Convexity splitting: iterative scheme for TV-H−1 inpainting that is
unconditionally stable:

Apply convexity splitting to the two energies

J 1(u) =
∫

Ω
|∇u| dx, J 2(u) =

1
2λ

∫
Ω

χΩ\D(u− g)2

⇒

uk+1−uk

τ + C1∆2uk+1 + C2u
k+1 = C1∆2uk −∆(∇ · ( ∇uk

|∇uk|))
+C2u

k + 1
λχΩ\D(g − uk),

with constants C1 > 1
ε (where here ε comes from the regularization of

the total variation), C2 > 1/λ.

1joint work with Andrea Bertozzi
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A Dual Approach for TV-H−1 Minimization

A dual method

Since usually in inpainting tasks λ is chosen comparatively small,
e.g., λ = 10−3, the condition on C2 damps the convergence of this
method ⇒ although unconditionally stable, converging slow! . . .
. . . this will be similar for the new approach, but with the new
approach we will be able to apply domain decomposition to
solve the minimization problem ⇒ Parallelize the numerical
computation ⇒ Shorten the computational time.
The new approach will give us a ”unified” algorithm to solve
TV-H−1 minimization.
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A Dual Approach for TV-H−1 Minimization

A dual method (cont.)

Chambolle (04): A dual method to numerically compute a minimizer of

J (u) =
1
2λ

‖u− g‖2
L2(Ω) + |Du| (Ω).

It amounts to compute the minimizer u of J as

u = g − PλK(g),

where PλK denotes the orthogonal projection over L2(Ω) on the
convex set K which is the closure of the set{

∇ · ξ : ξ ∈ C1
c (Ω; R2), |ξ(x)| ≤ 1 ∀x ∈ R2

}
.

To numerically compute the projection PλK(g) he uses a fixed point
algorithm.
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A Dual Approach for TV-H−1 Minimization

A dual method (cont.)

. . . now we want to do something similar for TV-H−1 minimization, i.e.,
we want to numerically solve

min
u∈BV (Ω)

J (u) = |Du| (Ω) +
1
2λ

‖Tu− g‖2
−1 .

First Step: Solve the simplified problem when T = Id

Second Step: Use the solution for T = Id in order to solve the
general case with the method of surrogate functionals.
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A Dual Approach for TV-H−1 Minimization

A dual method (cont.)
First Step:

min
u
{J (u) = |Du| (Ω) +

1

2λ
‖u− g‖2−1},

. . . corresponding optimality condition

0 ∈ ∂ |Du| (Ω) + ∆−1(u− g)
1

λ
.

With
s ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(s),

this can be rewritten as

u ∈ ∂ |D·| (Ω)∗
„

∆−1(g − u)

λ

«
.

where

|D·| (Ω)∗(v) = χK(v) =

(
0 if v ∈ K

+∞ otherwise,

and K is the closure of the set˘
∇ · ξ : ξ ∈ C1

c (Ω; R2), |ξ(x)| ≤ 1 ∀x ∈ R2¯
.
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A Dual Approach for TV-H−1 Minimization

A dual method (cont.)
First Step:
With w = ∆−1(g − u)/λ it reads

0 ∈ (−∆w − g/λ) + 1
λ
∂ |D·| (Ω)∗(w) in Ω

w = 0 on ∂Ω.

In other words w is a minimizer of‚‚w −∆−1g/λ
‚‚2

H1
0 (Ω)

2
+

1

λ
|D·| (Ω)∗(w),

where H1
0 (Ω) =

˘
v ∈ H1(Ω) : v = 0 on ∂Ω

¯
and ‖v‖H1

0 (Ω) = ‖∇v‖.
A minimizer w fulfills

w = P1
K(∆−1g/λ),

where P1
K is the orthogonal projection on K over H1

0 (Ω), i.e.,

P1
K(u) = argminv∈K ‖u− v‖H1

0 (Ω) .

Hence the solution u of the problem is given by

u = g + ∆
`
P1

λK(∆−1g)
´
.
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A Dual Approach for TV-H−1 Minimization

A dual method (cont.)

First Step:
Computing the nonlinear projection P1

λK(∆−1g) amounts to solving the following
problem:

min

‚‚‚`
∇

`
λ∇ · p−∆−1g

´´
i,j

‚‚‚2

: p ∈ Y, |pi,j | ≤ 1 ∀i = 1, . . . , N ; j = 1, . . . , M

ff
.

Using the Karush-Kuhn-Tucker conditions for the above constrained minimization one
can propose the following gradient descent algorithm: for an initial p0 = 0, iterate for
n ≥ 0

pn+1
i,j =

pn
i,j − τ

`
∇∆

`
∇ · pn −∆−1g/λ

´´
i,j

1 + τ
˛̨̨
(∇∆(∇ · pn −∆−1g/λ))i,j

˛̨̨ .

Redoing the convergence proof from the paper of Chambolle we end up with a similar
result:

Theorem

Let τ ≤ 1/64. Then, λ∇ · pn converges to P1
λK(∆−1g) as n →∞.
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A Dual Approach for TV-H−1 Minimization

A dual method (cont.)

Second Step:
The second step is to use the presented algorithm in order to solve

min
u
{J (u) = |Du| (Ω) +

1

2λ
‖Tu− g‖2−1}.

Approximate a minimizer iteratively by a sequence of minimizers of, what we call,
surrogate functionals J s. Let τ > 0 be a fixed stepsize. Starting with an initial
condition u0 = g, we solve for k ≥ 0

uk+1 = argminuJ
s(u, uk) = |Du| (Ω)+

1

2τ

‚‚‚u− uk
‚‚‚2

−1
+

1

2λ

‚‚‚u−
“
g + (Id− T )uk

”‚‚‚2

−1
.

Note that:

A rigorous derivation of convergence properties is still missing!

For image inpainting the surrogate functionals have a fourth order optimality
conditions!
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A Dual Approach for TV-H−1 Minimization

A dual method (cont.)

Second Step:
Now, the corresponding optimality condition reads

0 ∈ ∂ |Du| (Ω) +
1

τ
∆−1(u− uk) +

1

λ
∆−1

“
u−

“
g + (Id− T )uk

””
.

This can be rewritten as

∆−1
“g1 − u

τ
+

g2 − u

λ

”
∈ ∂ |Du| (Ω),

where g1 = uk, g2 = g + (Id− T )uk.
Setting

g = g1λ+g2τ
λ+τ

µ = λτ
λ+τ

,

we end up with the same inclusion as before, i.e.,

∆−1(g − u)

µ
∈ ∂ |Du| (Ω).
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A Dual Approach for TV-H−1 Minimization
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A Dual Approach for TV-H−1 Minimization

A dual method (cont.)

A ”unified” algorithm to solve TV-H−1 Minimization:

In the case T = Id directly compute a minimizer with

u = g + ∆
(
P1

λK(∆−1g)
)
.

In the case T 6= Id iteratively minimize the surrogate functionals
by solving

uk = g + ∆
(
P1

λK(∆−1g)
)
.

in every iteration step until the two subsequent iterates uk and
uk+1 are sufficiently close.
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A Dual Approach for TV-H−1 Minimization

Denoising examples

Figure: Noisy image with SNR = 25.4
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A Dual Approach for TV-H−1 Minimization

Denoising examples

Figure: Noisy image with SNR = 29.4
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A Dual Approach for TV-H−1 Minimization

Denoising examples

Schönlieb (NAM, Göttingen) PDEs for Image Inpainting Part III Göttingen - 28.January.2010 29 / 39



A Dual Approach for TV-H−1 Minimization

Inpainting examples

2

2u(1000) with λ = 10−3.
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A Dual Approach for TV-H−1 Minimization

4th order versus 2nd order method

3 4

3TV-H−1 u(1000) with λ = 10−3.
4TV-L2 u(5000) with λ = 10−3.
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Domain Decomposition for TV-H−1 Inpainting

Outline

1 Unconditionally Stable Schemes

2 A Dual Approach for TV-H−1 Minimization

3 Domain Decomposition for TV-H−1 Inpainting
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Domain Decomposition for TV-H−1 Inpainting

Domain Decomposition for TV-H−1 inpainting

Why domain decomposition?

Speed up the numerical computation of minimizers! Parallel
Computations are possible!
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Domain Decomposition for TV-H−1 Inpainting

Domain Decomposition for TV-H−1 inpainting (cont.)

Domain Decomposition:
Split the domain Ω into two arbitrary nonoverlapping domains
Ω = Ω1 ∪ Ω2 with Ω1 ∩ Ω2 = ∅.
Let H = L2(Ω) and Vi = L2(Ωi), where H = V1 ⊕ V2.

Pick an initial V1 ⊕ V2 3 u0
1 + u0

2 := u0 ∈ BV (Ω), for example u0 = 0,
and iterate 

un+1
1 ≈ argminu1∈V1

J (u1 + un
2 )

un+1
2 ≈ argminu2∈V2

J (un+1
1 + u2)

un+1 := un+1
1 + un+1

2 .

This is implemented by solving the subspace minimization problems
via an oblique thresholding iteration (Fornasier, Schönlieb 08).
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Domain Decomposition for TV-H−1 Inpainting

Domain Decomposition for TV-H−1 inpainting (cont.)
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Domain Decomposition for TV-H−1 Inpainting

Domain Decomposition for TV-H−1 inpainting (cont.)

A minimizer uk+1
1 of the subproblem on Ω1 can be iteratively computed

(again by means of surrogate functionals) as

uk+1
1 = −∆

(
Id− P1

µK

) (
∆−1(z + u2)− µη

)
− u2.

where η fulfills

η =
1
µ

ΠV2

[
P1

µK

(
µη −∆−1(u2 + z)

)]
.

which can be computed via the iteration

η0 ∈ V2, ηm+1 =
1
µ

ΠV2

[
P1

µK

(
µηm −∆−1(u2 + z)

)]
, m ≥ 0.
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Domain Decomposition for TV-H−1 Inpainting

Domain Decomposition for TV-H−1 inpainting (cont.)

In sum we solve TV-H−1 inpainting by the alternating subspace
minimizations: Pick an initial V1 ⊕ V2 3 u0,L

1 + u0,M
2 := u0 ∈ BV (Ω), for

example u0 = 0, and iterate

{
un+1,0

1 = un,L
1

un+1,`+1
1 = argminu1∈V1

J s
1 (u1 + un,M

2 , un+1,`
1 ) ` = 0, . . . , L− 1{

un+1,0
2 = un,M

2

un+1,m+1
2 = argminu2∈V2

J s
2 (un+1,L

1 + u2, u
n+1,m
2 ) m = 0, . . . ,M − 1

un+1 := un+1,L
1 + un+1,M

2 ,

where each subminimization problem is computed by the oblique
thresholding algorithm.
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Domain Decomposition for TV-H−1 Inpainting

Domain decomposition results
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The End
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The Matlab Code for the domain
decomposition method is available at:
http://homepage.univie.ac.at/
carola.schoenlieb/webpage_
tvdode/tv_dode_numerics.htm

For more details see http://homepage.univie.ac.at/carola.schoenlieb

or write to: c.b.schonlieb@damtp.cam.ac.uk
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